Non-Relativistic Twistor Theory and Newton–Cartan Geometry

被引:0
|
作者
Maciej Dunajski
James Gundry
机构
[1] University of Cambridge,Department of Applied Mathematics and Theoretical Physics
来源
关键词
Vector Bundle; Line Bundle; Minkowski Space; Normal Bundle; Holomorphic Vector Bundle;
D O I
暂无
中图分类号
学科分类号
摘要
We develop a non–relativistic twistor theory, in which Newton–Cartan structures of Newtonian gravity correspond to complex three–manifolds with a four–parameter family of rational curves with normal bundle O⊕O(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O} \oplus \mathcal {O}(2)}$$\end{document}. We show that the Newton–Cartan space-times are unstable under the general Kodaira deformation of the twistor complex structure. The Newton–Cartan connections can nevertheless be reconstructed from Merkulov’s generalisation of the Kodaira map augmented by a choice of a holomorphic line bundle over the twistor space trivial on twistor lines. The Coriolis force may be incorporated by holomorphic vector bundles, which in general are non–trivial on twistor lines. The resulting geometries agree with non–relativistic limits of anti-self-dual gravitational instantons.
引用
收藏
页码:1043 / 1074
页数:31
相关论文
共 50 条
  • [1] Non-Relativistic Twistor Theory and Newton-Cartan Geometry
    Dunajski, Maciej
    Gundry, James
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 342 (03) : 1043 - 1074
  • [2] Torsional string Newton-Cartan geometry for non-relativistic strings
    Leo Bidussi
    Troels Harmark
    Jelle Hartong
    Niels A. Obers
    Gerben Oling
    Journal of High Energy Physics, 2022
  • [3] Torsional string Newton-Cartan geometry for non-relativistic strings
    Bidussi, Leo
    Harmark, Troels
    Hartong, Jelle
    Obers, Niels A.
    Oling, Gerben
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (02)
  • [4] Non-relativistic intersecting branes, Newton-Cartan geometry and AdS/CFT
    Lambert, Neil
    Smith, Joseph
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (07):
  • [5] A non-relativistic limit of M-theory and 11-dimensional membrane Newton-Cartan geometry
    Blair, Chris D. A.
    Gallegos, Domingo
    Zinnato, Natale
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (10)
  • [6] A non-relativistic limit of M-theory and 11-dimensional membrane Newton-Cartan geometry
    Chris D. A. Blair
    Domingo Gallegos
    Natale Zinnato
    Journal of High Energy Physics, 2021
  • [7] Torsional Newton Cartan gravity from non-relativistic strings
    A.D. Gallegos
    U. Gürsoy
    N. Zinnato
    Journal of High Energy Physics, 2020
  • [8] Non-relativistic spinning particle in a Newton-Cartan background
    Barducci, Andrea
    Casalbuoni, Roberto
    Gomis, Joaquim
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (01):
  • [9] Non-relativistic conformal symmetries and Newton-Cartan structures
    Duval, C.
    Horvathy, P. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (46)
  • [10] Non-relativistic spinning particle in a Newton-Cartan background
    Andrea Barducci
    Roberto Casalbuoni
    Joaquim Gomis
    Journal of High Energy Physics, 2018