MMFF-NET: Multi-layer and multi-scale feature fusion network for low-light infrared image enhancement

被引:0
|
作者
Ge Zhu
Yuhan Chen
Xianquan Wang
Yiheng Zhang
机构
[1] Chongqing University of Technology,School of Mechanical Engineering
[2] Chongqing University of Technology,Engineering Research Center of Mechanical Testing Technology and Equipment (Ministry of Education)
[3] Chongqing University of Technology,Chongqing Key Laboratory of Time Grating Sensing and Advanced Testing Technology
来源
关键词
Infrared image; Feature fusion; Image enhancement; Deep neural network;
D O I
暂无
中图分类号
学科分类号
摘要
Most existing infrared image enhancement algorithms focus on detail and contrast enhancement of ordinary infrared images, and when applied to low-light infrared images, detail and target texture are often severely lost. The reason is that most algorithms process images in a single scale and have difficulty coping with the degradation of image features while enhancing brightness. To solve this problem, we propose a multi-layer and multi-scale feature fusion network (MMFF-Net). It can improve the brightness of low-light infrared images in the absence of normal-light reference samples and keep the image details consistent with the source image. In this paper, features at different layers of the image are extracted using an adaptively modified deep network. A multi-scale adaptive feature fusion module (MAFFM) is designed to preserve and fuse multi-scale information from different convolutional layer features. The fusion features are passed to the iterative function as pixel-wise parameters for image brightness enhancement. We also propose the local feature fusion module (LFFM), which reconstructs images after fusing multiple features, including brightness enhancement images and source images. Finally, in order to implement the training of the whole network, a set of loss functions is carefully designed in this paper. After extensive experiments, it is shown that the algorithm in this paper can effectively enhance low-light infrared images and perform well in subjective visual tests and quantitative tests compared to existing methods.
引用
收藏
页码:1089 / 1097
页数:8
相关论文
共 50 条
  • [31] Low-Light Image Enhancement Algorithm Based on Multi-Scale Concat Convolutional Neural Network
    Liu Weiqiang
    Zhao Peng
    Song Xiangying
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (14)
  • [32] Attention-based multi-scale recursive residual network for low-light image enhancement
    Kaidi Wang
    Yuanlin Zheng
    Kaiyang Liao
    Haiwen Liu
    Bangyong Sun
    Signal, Image and Video Processing, 2024, 18 : 2521 - 2531
  • [33] PRINCIPLE-INSPIRED MULTI-SCALE AGGREGATION NETWORK FOR EXTREMELY LOW-LIGHT IMAGE ENHANCEMENT
    Zhang, Jiaao
    Liu, Risheng
    Ma, Long
    Zhong, Wei
    Fan, Xin
    Luo, Zhongxuan
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 2638 - 2642
  • [34] Modality specific infrared and visible image fusion based on multi-scale rich feature representation under low-light environment
    Liu, Chenhua
    Chen, Hanrui
    Deng, Lei
    Guo, Chentong
    Lu, Xitian
    Yu, Heng
    Zhu, Lianqing
    Dong, Mingli
    INFRARED PHYSICS & TECHNOLOGY, 2024, 140
  • [35] Infrared and visible image fusion via multi-scale multi-layer rolling guidance filter
    G. Prema
    S. Arivazhagan
    Pattern Analysis and Applications, 2022, 25 : 933 - 950
  • [36] Infrared and visible image fusion via multi-scale multi-layer rolling guidance filter
    Prema, G.
    Arivazhagan, S.
    PATTERN ANALYSIS AND APPLICATIONS, 2022, 25 (04) : 933 - 950
  • [37] Method for enhancement of the multi-scale low-light image by combining an attention guidance
    Zhang Y.
    Li W.
    Li C.
    Ding S.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2023, 50 (01): : 129 - 136
  • [38] Semantic attention guided low-light image enhancement with multi-scale perception
    Hou, Yongqi
    Yang, Bo
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 103
  • [39] Multi-scale adaptive low-light image enhancement based on deep learning
    Cao, Taotao
    Peng, Taile
    Wang, Hao
    Zhu, Xiaotong
    Guo, Jia
    Zhang, Zhen
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (04)
  • [40] Multi-Scale and Multi-Layer Lattice Transformer for Underwater Image Enhancement
    Hsu, Wei-yen
    Hsu, Yu-yu
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (11)