On normal forms of singular Levi-flat real analytic hypersurfaces

被引:0
|
作者
Arturo Fernández-Pérez
机构
[1] IMPA,Instituto de Matemática Pura e Aplicada
关键词
Levi-flat hypersurfaces; holomorphic foliations; 32V40; 37F75;
D O I
暂无
中图分类号
学科分类号
摘要
Let F(z) = Re(P(z)) + h.o.t be such that M = (F = 0) defines a germ of real analytic Levi-flat at 0 ∈ ℂn, n ≥ 2, where P (z) is a homogeneous polynomial of degree k with an isolated singularity at 0 ∈ ℂn and Milnor number µ. We prove that there exists a holomorphic change of coordinate ϕ such that ϕ(M) = (Re(h) = 0), where h(z) is a polynomial of degree µ + 1 and j0k (h) = P.
引用
收藏
页码:75 / 85
页数:10
相关论文
共 50 条