Controllability of Impulsive Fractional Integro-Differential Evolution Equations

被引:0
|
作者
Haide Gou
Yongxiang Li
机构
[1] Northwest Normal University,Department of Mathematics
来源
关键词
Fractional evolution equation; Controllability; Measure of noncompactness; -resolvent family; Fixed point theorem; 26A33; 34K30; 34K35; 35R11; 93B05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are concerned with the controllability for a class of impulsive fractional integro-differential evolution equation in a Banach space. Sufficient conditions of the existence of mild solutions and approximate controllability for the concern problem are presented by considering the term u′(⋅)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u'(\cdot )$\end{document} and finding a control v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$v$\end{document} such that the mild solution satisfies u(b)=ub\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u(b)=u_{b}$\end{document} and u′(b)=ub′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u'(b)=u'_{b}$\end{document}. The discussions are based on Mönch fixed point theorem as well as the theory of fractional calculus and (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\alpha ,\beta )$\end{document}-resolvent operator. Finally, an example is given to illustrate the feasibility of our results.
引用
收藏
相关论文
共 50 条