On a new fractional-order Logistic model with feedback control

被引:0
|
作者
Manh Tuan Hoang
A. M. Nagy
机构
[1] FPT University,Department of Mathematics
[2] Kuwait University,Faculty of Science, Department of Mathematics
[3] Benha University,Department of Mathematics, Faculty of Science
关键词
fractional-order Logistic model; feedback control; Lyapunov functions; uniform asymptotic stability; nonstandard finite difference schemes; 26A33; 34A08; 37M05; 37N35; 93D30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we formulate and analyze a new fractional-order Logistic model with feedback control, which is different from a recognized mathematical model proposed in our very recent work. Asymptotic stability of the proposed model and its numerical solutions are studied rigorously. By using the Lyapunov direct method for fractional dynamical systems and a suitable Lyapunov function, we show that a unique positive equilibrium point of the new model is asymptotically stable. As an important consequence of this, we obtain a new mathematical model in which the feedback control variables only change the position of the unique positive equilibrium point of the original model but retain its asymptotic stability. Furthermore, we construct unconditionally positive nonstandard finite difference (NSFD) schemes for the proposed model using the Mickens’ methodology. It is worth noting that the constructed NSFD schemes not only preserve the positivity but also provide reliable numerical solutions that correctly reflect the dynamics of the new fractional-order model. Finally, we report some numerical examples to support and illustrate the theoretical results. The results indicate that there is a good agreement between the theoretical results and numerical ones.
引用
收藏
页码:390 / 402
页数:12
相关论文
共 50 条
  • [41] Fractional-order crime propagation model: a comparison between logistic and exponential growth
    Bansal, Komal
    Mathur, Trilok
    RICERCHE DI MATEMATICA, 2024,
  • [42] Hybrid Fibonacci wavelet method to solve fractional-order logistic growth model
    Ahmed, Shahid
    Jahan, Shah
    Nisar, Kottakkaran S.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (15) : 16218 - 16231
  • [43] The Effect of Feedback Controls on Stability in a Fractional-Order SI Epidemic Model
    Rida S.Z.
    Farghaly A.A.
    Hussien F.
    International Journal of Applied and Computational Mathematics, 2021, 7 (4)
  • [44] Stability control of a fractional-order Morris-Lecar neuronal model via fractional-order washout filter
    Yue, Kelong
    Yang, Renhuan
    Yang, Xiuzeng
    Cai, Qingwen
    Shen, Chao
    Yang, Liu
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2022, 33 (09):
  • [45] On the Fractional-Order Logistic Equation with Two Different Delays
    El-Sayed, Ahmed M. A.
    El-Saka, Hala A. A.
    El-Maghrabi, Esam M.
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2011, 66 (3-4): : 223 - 227
  • [46] Uniform asymptotic stability of a Logistic model with feedback control of fractional order and nonstandard finite difference schemes
    Manh Tuan Hoang
    Nagy, A. M.
    CHAOS SOLITONS & FRACTALS, 2019, 123 : 24 - 34
  • [47] Optimal fractional-order PID control of chaos in the fractional-order BUCK converter
    Zhu, Darui
    Liu, Ling
    Liu, Chongxin
    PROCEEDINGS OF THE 2014 9TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2014, : 787 - 791
  • [48] Fractional-order Iterative Learning Control and Identification for Fractional-order Hammerstein System
    Li, Yan
    Zhai, Lun
    Chen, YangQuan
    Ahn, Hyo-Sung
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 840 - 845
  • [49] Fractional-Order Adaptive Backstepping Control of a Noncommensurate Fractional-Order Ferroresonance System
    Wang, Yan
    Liu, Ling
    Liu, Chongxin
    Zhu, Ziwei
    Sun, Zhenquan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
  • [50] Fractional-Order Nonlinear Disturbance Observer Based Control of Fractional-Order Systems
    Munoz-Vazquez, Aldo Jonathan
    Parra-Vega, Vicente
    Sanchez-Orta, Anand
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (07):