Assimilation of D-InSAR snow depth data by an ensemble Kalman filter

被引:0
|
作者
Yang J. [1 ]
Li C. [1 ,2 ]
机构
[1] College of Resource and Environment Sciences, Xinjiang University, Urumqi
[2] Institute of Arid Ecological Environment, Xinjiang University, Urumqi
基金
中国国家自然科学基金;
关键词
D-InSAR; Ensemble Kalman filter; Sentinel-1; Snow depth; Ultrasonic snow depth detector;
D O I
10.1007/s12517-021-06699-y
中图分类号
学科分类号
摘要
Snow depth mirrors regional climate change and is a vital parameter for medium- and long-term numerical climate prediction, numerical simulation of land-surface hydrological process, and water resource assessment. However, the quality of the available snow depth products retrieved from remote sensing is inevitably affected by cloud and mountain shadow, and the spatiotemporal resolution of the snow depth data cannot meet the need of hydrological research and decision-making assistance. Therefore, a method to enhance the accuracy of snow depth data is urgently required. In the present study, three kinds of snow depth data which included the D-InSAR data retrieved from the remote sensing images of Sentinel-1 synthetic aperture radar, the automatically measured data using ultrasonic snow depth detectors, and the manually measured data were assimilated based on ensemble Kalman filter. The assimilated snow depth data were spatiotemporally consecutive and integrated. Under the constraint of the measured data, the accuracy of the assimilated snow depth data was higher and met the need of subsequent research. The development of ultrasonic snow depth detector and the application of D-InSAR technology in snow depth inversion had greatly alleviated the insufficiency of snow depth data in types and quantity. At the same time, the assimilation of multi-source snow depth data by ensemble Kalman filter also provides high-precision data to support remote sensing hydrological research, water resource assessment, and snow disaster prevention and control program. © 2021, The Author(s).
引用
收藏
相关论文
共 50 条
  • [21] Operational hydrological data assimilation with the recursive ensemble Kalman filter
    McMillan, H. K.
    Hreinsson, E. Oe.
    Clark, M. P.
    Singh, S. K.
    Zammit, C.
    Uddstrom, M. J.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2013, 17 (01) : 21 - 38
  • [22] Data assimilation for nonlinear problems by ensemble Kalman filter with reparameterization
    Chen, Yan
    Oliver, Dean S.
    Zhang, Dongxiao
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2009, 66 (1-2) : 1 - 14
  • [23] A modified iterative ensemble Kalman filter data assimilation method
    Xu, Baoxiong
    Bai, Yulong
    Wang, Yizhao
    Li, Zhe
    Ma, Boyang
    2ND INTERNATIONAL CONFERENCE ON MATERIALS SCIENCE, ENERGY TECHNOLOGY AND ENVIRONMENTAL ENGINEERING (MSETEE 2017), 2017, 81
  • [25] Comment on `Data assimilation using a ensemble Kalman filter technique'
    van, Leeuwen, Peter Jan
    Monthly Weather Review, 127 (6 II): : 1374 - 1377
  • [26] An adaptive ensemble Kalman filter for soil moisture data assimilation
    Reichle, Rolf H.
    Crow, Wade T.
    Keppenne, Christian L.
    WATER RESOURCES RESEARCH, 2008, 44 (03)
  • [27] A suboptimal data assimilation algorithm based on the ensemble Kalman filter
    Klimova, Ekaterina
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2012, 138 (669) : 2079 - 2085
  • [28] Comment on 'Data assimilation using an ensemble kalman filter technique'
    van Leeuwen, P.J.
    Monthly Weather Review, 1999, 127 (6 1/2): : 1374 - 1377
  • [29] A multimodel data assimilation framework via the ensemble Kalman filter
    Xue, Liang
    Zhang, Dongxiao
    WATER RESOURCES RESEARCH, 2014, 50 (05) : 4197 - 4219
  • [30] Data assimilation in groundwater modelling: ensemble Kalman filter versus ensemble smoothers
    Li, Liangping
    Puzel, Ryan
    Davis, Arden
    HYDROLOGICAL PROCESSES, 2018, 32 (13) : 2020 - 2029