A Tighter C-Eigenvalue Interval for Piezoelectric-Type Tensors

被引:0
|
作者
Caili Sang
机构
[1] Guizhou Minzu University,College of Data Science and Information Engineering
[2] Guizhou Normal University,School of Mathematical Sciences
关键词
Piezoelectric tensors; Piezoelectric-type tensors; -eigenvalues; -eigenvectors; Localization; 12E10; 15A18; 15A69;
D O I
暂无
中图分类号
学科分类号
摘要
To locate all C-eigenvalues of a piezoelectric-type tensor, a new C-eigenvalue inclusion interval is constructed. It is proved that the new interval is tighter than that proposed by Wang et al. (Appl Math Lett 100:106035, 2020). Numerical examples show the effectiveness of the new result.
引用
收藏
页码:2255 / 2264
页数:9
相关论文
共 50 条
  • [21] PROPERTIES AND CALCULATION FOR C-EIGENVALUES OF A PIEZOELECTRIC-TYPE TENSOR
    Zhao, Jianxing
    Luo, Jincheng
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2022, 18 (06) : 4351 - 4372
  • [22] An S-type inclusion set for C-eigenvalues of a piezoelectric-type tensor
    He, Jun
    Liu, Yanmin
    Xu, Guangjun
    APPLIED MATHEMATICS LETTERS, 2021, 121
  • [23] New S-type localization sets for C-eigenvalues of a piezoelectric-type tensor
    Xu, Yangyang
    Shao, Licai
    He, Guinan
    APPLIED MATHEMATICS LETTERS, 2024, 150
  • [24] Computing the Largest C-Eigenvalue of a Tensor Using Convex Relaxation
    Yuning Yang
    Chang Liang
    Journal of Optimization Theory and Applications, 2022, 192 : 648 - 677
  • [25] αβω-inclusion sets for general C-eigenvalues of a general piezoelectric-type tensor
    Lei-Xiao-Qiang
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (16): : 3043 - 3068
  • [26] Computing the Largest C-Eigenvalue of a Tensor Using Convex Relaxation
    Yang, Yuning
    Liang, Chang
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 192 (02) : 648 - 677
  • [27] A tighter M-eigenvalue localization set for partially symmetric tensors and its an application
    Bai, Shunjie
    AIMS MATHEMATICS, 2022, 7 (04): : 6084 - 6098
  • [28] A TIGHTER M-EIGENVALUE LOCALIZATION SET FOR FOURTH-ORDER PARTIALLY SYMMETRIC TENSORS
    Wang, Wenchao
    Li, Meixia
    Che, Haitao
    PACIFIC JOURNAL OF OPTIMIZATION, 2020, 16 (04): : 687 - 698
  • [29] EXCLUSION SETS IN THE Δ-TYPE EIGENVALUE INCLUSION SET FOR TENSORS
    Li, Yaotang
    Li, Suhua
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2019, 15 (02) : 507 - 516
  • [30] Brualdi-type eigenvalue inclusion sets of tensors
    Bu, Changjiang
    Wei, Yuanpeng
    Sun, Lizhu
    Zhou, Jiang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 480 : 168 - 175