Multilevel heterogeneous network model for wireless sensor networks

被引:0
|
作者
Samayveer Singh
Satish Chand
Bijendra Kumar
机构
[1] Netaji Subhas Institute of Technology,Department of Computer Science and Engineering
来源
Telecommunication Systems | 2017年 / 64卷
关键词
Energy efficiency; Network lifetime; Homogeneous node; Heterogeneity node; Clustering; Number of rounds;
D O I
暂无
中图分类号
学科分类号
摘要
The lifetime of a network can be increased by increasing the network energy. The network energy can be increased either increasing the number of sensors or increasing the initial energy of some sensors without increasing their numbers. Increasing network energy by deploying extra sensors is about ten times costlier than that using some sensors of high energy. Increasing the initial energy of some sensors leads to heterogeneous nodes in the network. In this paper, we propose a multilevel heterogeneous network model that is characterized by two types of parameters: primary parameter and secondary parameters. The primary parameter decides the level of heterogeneity by assuming the values of secondary parameters. This model can describe a network up to nth level of heterogeneity (n is a finite number). We evaluate the network performance by applying the HEED, a clustering protocol, on this model, naming it as MLHEED (Multi Level HEED) protocol. For n level of heterogeneity, this protocol is denoted by MLHEED-n. The numbers of nodes of each type in any level of heterogeneity are determined by the secondary model parameter. The MLHEED protocol (for all level heterogeneity) considers two variables, i.e., residual energy and node density, for deciding the cluster heads. We also consider fuzzy implementation of the MLHEED in which four variables are used to decide the cluster heads: residual energy, node density, average energy, and distance between base station and the sensor nodes. In this work, we illustrate the network model up to seven levels (1≤n≤7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le n\le 7$$\end{document}). Experimentally, as the level of heterogeneity increases, the rate of energy dissipation decreases and hence the nodes stay alive for longer time. The MLHEED-m, m=2,3,4,5,6,7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=2,3,4,5,6,7$$\end{document}, increase the network lifetime by 73.05,143.40,213.17,267.90,348.60,419.10%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$73.05, 143.40, 213.17, 267.90, 348.60, 419.10\,\%$$\end{document}, respectively, by increasing the network energy as 40,57,68.5,78,84,92.5%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$40, 57, 68.5, 78, 84, 92.5\,\%$$\end{document} with respect to the original HEED protocol. In case of fuzzy implementation, the MLHEEDFL-m, m=2,3,4,5,6,7,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=2,3,4,5,6,7,$$\end{document} increases the network lifetime by 282.7,378.5,435.78,498.50,582.63,629.79%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$282.7, 378.5, 435.78, 498.50, 582.63, 629.79\,\%$$\end{document}, respectively, corresponding to the same increase in the network energy as that of the MLHEED (all levels) with respect to the original HEED. The fuzzy implementation of the HEED, MLHEEDFL-1, increases the network lifetime by 176.6%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$176.6\,\%$$\end{document} with respect to the original HEED with no increase in the network energy.
引用
收藏
页码:259 / 277
页数:18
相关论文
共 50 条
  • [21] Multilevel Pattern Mining Architecture for Automatic Network Monitoring in Heterogeneous Wireless Communication Networks
    Qu, Zhiguo
    Keeney, John
    Robitzsch, Sebastian
    Zaman, Faisal
    Wang, Xiaojun
    [J]. CHINA COMMUNICATIONS, 2016, 13 (07) : 108 - 116
  • [22] Deploying a Heterogeneous Wireless Sensor Network
    Yu, Liyang
    Wang, Neng
    Zhang, Wei
    Zheng, Chunlei
    [J]. 2007 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-15, 2007, : 2588 - +
  • [23] Energy prediction and reliable clustering routing protocol for multilevel energy heterogeneous wireless sensor networks
    Cai, Hai-Bin
    Ju, Xiao-Ming
    Cao, Qi-Ying
    [J]. Jisuanji Xuebao/Chinese Journal of Computers, 2009, 32 (12): : 2393 - 2402
  • [24] Threshold Balanced Sampled DEEC Model for Heterogeneous Wireless Sensor Networks
    Vancin, Sercan
    Erdem, Ebubekir
    [J]. WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2018,
  • [25] An Efficient Multilevel Probabilistic Model for Abnormal Traffic Detection in Wireless Sensor Networks
    Khan, Muhammad Altaf
    Nasralla, Moustafa M.
    Umar, Muhammad Muneer
    Ghani-Ur-Rehman
    Khan, Shafiullah
    Choudhury, Nikumani
    [J]. SENSORS, 2022, 22 (02)
  • [26] Effective clustering protocol based on network division for heterogeneous wireless sensor networks
    Wided Abidi
    Tahar Ezzedine
    [J]. Computing, 2020, 102 : 413 - 425
  • [27] Maximizing network lifetime for target coverage problem in heterogeneous wireless sensor networks
    Liu, Zheng
    [J]. MOBILE AD-HOC AND SENSOR NETWORKS, PROCEEDINGS, 2007, 4864 : 457 - +
  • [28] Effective clustering protocol based on network division for heterogeneous wireless sensor networks
    Abidi, Wided
    Ezzedine, Tahar
    [J]. COMPUTING, 2020, 102 (02) : 413 - 425
  • [29] Network Coding on Heterogeneous Multi-Core Processors for Wireless Sensor Networks
    Kim, Deokho
    Park, Karam
    Ro, Andwon W.
    [J]. SENSORS, 2011, 11 (08) : 7908 - 7933
  • [30] Heterogeneous wireless sensor network deployment and topology control based on irregular sensor model
    Wu, Chun-Hsien
    Chung, Yeh-Ching
    [J]. ADVANCES IN GRID AND PERVASIVE COMPUTING, PROCEEDINGS, 2007, 4459 : 78 - +