Multilevel heterogeneous network model for wireless sensor networks

被引:0
|
作者
Samayveer Singh
Satish Chand
Bijendra Kumar
机构
[1] Netaji Subhas Institute of Technology,Department of Computer Science and Engineering
来源
Telecommunication Systems | 2017年 / 64卷
关键词
Energy efficiency; Network lifetime; Homogeneous node; Heterogeneity node; Clustering; Number of rounds;
D O I
暂无
中图分类号
学科分类号
摘要
The lifetime of a network can be increased by increasing the network energy. The network energy can be increased either increasing the number of sensors or increasing the initial energy of some sensors without increasing their numbers. Increasing network energy by deploying extra sensors is about ten times costlier than that using some sensors of high energy. Increasing the initial energy of some sensors leads to heterogeneous nodes in the network. In this paper, we propose a multilevel heterogeneous network model that is characterized by two types of parameters: primary parameter and secondary parameters. The primary parameter decides the level of heterogeneity by assuming the values of secondary parameters. This model can describe a network up to nth level of heterogeneity (n is a finite number). We evaluate the network performance by applying the HEED, a clustering protocol, on this model, naming it as MLHEED (Multi Level HEED) protocol. For n level of heterogeneity, this protocol is denoted by MLHEED-n. The numbers of nodes of each type in any level of heterogeneity are determined by the secondary model parameter. The MLHEED protocol (for all level heterogeneity) considers two variables, i.e., residual energy and node density, for deciding the cluster heads. We also consider fuzzy implementation of the MLHEED in which four variables are used to decide the cluster heads: residual energy, node density, average energy, and distance between base station and the sensor nodes. In this work, we illustrate the network model up to seven levels (1≤n≤7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le n\le 7$$\end{document}). Experimentally, as the level of heterogeneity increases, the rate of energy dissipation decreases and hence the nodes stay alive for longer time. The MLHEED-m, m=2,3,4,5,6,7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=2,3,4,5,6,7$$\end{document}, increase the network lifetime by 73.05,143.40,213.17,267.90,348.60,419.10%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$73.05, 143.40, 213.17, 267.90, 348.60, 419.10\,\%$$\end{document}, respectively, by increasing the network energy as 40,57,68.5,78,84,92.5%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$40, 57, 68.5, 78, 84, 92.5\,\%$$\end{document} with respect to the original HEED protocol. In case of fuzzy implementation, the MLHEEDFL-m, m=2,3,4,5,6,7,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=2,3,4,5,6,7,$$\end{document} increases the network lifetime by 282.7,378.5,435.78,498.50,582.63,629.79%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$282.7, 378.5, 435.78, 498.50, 582.63, 629.79\,\%$$\end{document}, respectively, corresponding to the same increase in the network energy as that of the MLHEED (all levels) with respect to the original HEED. The fuzzy implementation of the HEED, MLHEEDFL-1, increases the network lifetime by 176.6%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$176.6\,\%$$\end{document} with respect to the original HEED with no increase in the network energy.
引用
收藏
页码:259 / 277
页数:18
相关论文
共 50 条
  • [1] Multilevel heterogeneous network model for wireless sensor networks
    Singh, Samayveer
    Chand, Satish
    Kumar, Bijendra
    [J]. TELECOMMUNICATION SYSTEMS, 2017, 64 (02) : 259 - 277
  • [2] Energy-Efficient Multilevel Clustering in Heterogeneous Wireless Sensor Networks
    Katiyar, Vivek
    Chand, Narottam
    Soni, Surender
    [J]. ADVANCES IN COMPUTING, COMMUNICATION AND CONTROL, 2011, 125 : 293 - 299
  • [3] A power sensor network for identification of heterogeneous wireless networks
    Ivkovic, Goran
    Spasojevic, Predrag
    Seskar, Ivan
    [J]. 2007 41ST ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS, VOLS 1 AND 2, 2007, : 765 - 770
  • [4] Multilevel Balanced Distributed Energy Efficient Heterogeneous Protocol for Wireless Sensor Networks
    Srivastava, Suman
    Kumar, Awadhesh
    Pandey, Anamika
    [J]. 2015 INTERNATIONAL CONFERENCE ON GREEN COMPUTING AND INTERNET OF THINGS (ICGCIOT), 2015, : 649 - 654
  • [5] Load balance clustering algorithm for multilevel energy heterogeneous wireless sensor networks
    College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China
    [J]. Jisuanji Yanjiu yu Fazhan, 2008, 3 (392-399):
  • [6] An Energy-Efficient Multilevel Clustering Algorithm for Heterogeneous Wireless Sensor Networks
    Soni, Surender
    Katiyar, Vivek
    Chand, Narottam
    [J]. INTERNATIONAL JOURNAL OF MOBILE COMPUTING AND MULTIMEDIA COMMUNICATIONS, 2011, 3 (03) : 62 - 79
  • [7] Energy-Efficient Multilevel Heterogeneous Routing Protocol for Wireless Sensor Networks
    Zhang, Yinghui
    Zhang, Xiaolu
    Ning, Shuang
    Gao, Jing
    Liu, Yang
    [J]. IEEE ACCESS, 2019, 7 : 55873 - 55884
  • [8] Enhancing Network lifetime and Throughput in Heterogeneous Wireless Sensor Networks
    Kumar, Hradesh
    Singh, Pradeep Kumar
    [J]. WIRELESS PERSONAL COMMUNICATIONS, 2021, 120 (04) : 2971 - 2989
  • [9] Integration in the heterogeneous wireless sensor networks based on network layer
    Ju, Yun
    Bai, Yan
    Zhu, Yaochun
    Wang, Renshu
    Li, Yukai
    [J]. Sensors and Transducers, 2013, 23 (SPEC.ISSUE): : 70 - 74
  • [10] Network Planning for Heterogeneous Wireless Sensor Networks in Environmental Survivability
    Machado, Renita
    Zhang, Wensheng
    Wang, Guiling
    [J]. ICTAI: 2009 21ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, 2009, : 814 - +