Enumeration of Paths in the Young–Fibonacci Graph

被引:0
|
作者
Evtushevsky V.Y. [1 ]
机构
[1] St.Petersburg State University, St.Petersburg
关键词
D O I
10.1007/s10958-020-04829-7
中图分类号
学科分类号
摘要
The Young–Fibonacci graph is the Hasse diagram of one of the two (along with the Young lattice) 1-differential graded modular lattices. This explains the interest to path enumeration problems in this graph. We obtain a formula for the number of paths between two vertices of the Young–Fibonacci graph which is polynomial with respect to the minimum of their ranks. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:663 / 679
页数:16
相关论文
共 50 条
  • [31] ENUMERATION OF ACYCLIC WALKS IN A GRAPH
    BABIC, D
    GRAOVAC, A
    DISCRETE APPLIED MATHEMATICS, 1993, 45 (02) : 117 - 123
  • [32] ENUMERATION OF ALL CUTSETS OF A GRAPH
    RAO, VVB
    SANKARAN, P
    RAO, KS
    MURTI, VGK
    PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1968, 56 (07): : 1247 - &
  • [33] ENUMERATION OF ALL CUTSETS OF A GRAPH
    RAO, KS
    RAO, VVB
    SANKARAN, P
    MURTI, VGK
    ELECTRONICS LETTERS, 1969, 5 (10) : 208 - &
  • [34] Enumeration of connected graph coverings
    Kwak, JH
    Lee, J
    JOURNAL OF GRAPH THEORY, 1996, 23 (02) : 105 - 109
  • [35] ENUMERATION OF ALL TREES OF A GRAPH
    RAO, VVB
    MURTI, VGK
    ELECTRONICS LETTERS, 1969, 5 (13) : 282 - &
  • [36] ENUMERATION OF ALL CIRCUITS OF A GRAPH
    RAO, VVB
    MURTI, VGK
    PROCEEDINGS OF THE IEEE, 1969, 57 (04) : 700 - +
  • [37] SPANNING PATHS IN FIBONACCI-SUM GRAPHS
    Fox, Kyle
    Kinnersley, William B.
    Mcdonald, Daniel
    Orlow, Nathan
    Puled, Gregory J.
    FIBONACCI QUARTERLY, 2014, 52 (01): : 46 - 49
  • [38] AN ENUMERATION THEOREM AND SOME APPLICATIONS TO GRAPH ENUMERATION - PRELIMINARY REPORT
    OSTERWEI.LJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (02): : 400 - &
  • [39] Typical Paths of a Graph
    Cui, Cewei
    Dang, Zhe
    Fischer, Thomas R.
    FUNDAMENTA INFORMATICAE, 2011, 110 (1-4) : 95 - 109
  • [40] THE COMMUTING GRAPH ON THE FIBONACCI ORBITS OF GROUPS
    Hashemi, Rasool
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2011, 35 (43): : 33 - 38