Nonlinear propagation of ultra-low-frequency electromagnetic modes in a magnetized dusty plasma

被引:0
|
作者
A.A. Mamun
A.A. Gebreel
机构
[1] The Abdus Salam International Centre for Theoretical Physics,
[2] P.O. Box 586,undefined
[3] Trieste,undefined
[4] Italy,undefined
[5] University of Cambridge,undefined
[6] Cavendish Laboratory,undefined
[7] Cambridge CB3 OHE,undefined
[8] UK,undefined
关键词
PACS. 52.35.Hr Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid) - 52.35.Sb Solitons; BGK modes - 52.35.Mw Nonlinear waves and nonlinear wave propagation (including parametric effects, mode coupling, ponderomotive effects, etc.);
D O I
暂无
中图分类号
学科分类号
摘要
A theoretical investigation has been made of nonlinear propagation of ultra-low-frequency electromagnetic waves in a magnetized two fluid (negatively charged dust and positively charged ion fluids) dusty plasma. These are modified Alfvén waves for small value of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} and are modified magnetosonic waves for large \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is the angle between the directions of the external magnetic field and the wave propagation. A nonlinear evolution equation for the wave magnetic field, which is known as Korteweg de Vries (K-dV) equation and which admits a stationary solitary wave solution, is derived by the reductive perturbation method. The effects of external magnetic field and dust characteristics on the amplitude and the width of these solitary structures are examined. The implications of these results to some space and astrophysical plasma systems, especially to planetary ring-systems, are briefly mentioned.
引用
收藏
页码:301 / 305
页数:4
相关论文
共 50 条
  • [41] Propagation characteristics of low frequency electromagnetic modes in collisional beam plasma system
    Gupta, Rajesh
    Sharma, Suresh C.
    Gupta, Ruby
    INDIAN JOURNAL OF PHYSICS, 2024, 98 (12) : 4207 - 4215
  • [42] Excitation of convective cells by drift-like electromagnetic modes in a magnetized dusty plasma
    Shukla, PK
    Stenflo, L
    JOURNAL OF PLASMA PHYSICS, 2004, 70 : 645 - 650
  • [43] Low frequency electromagnetic modes in strongly magnetized coupled plasmas
    Rylyuk, VM
    Ortner, J
    CONTRIBUTIONS TO PLASMA PHYSICS, 2001, 41 (04) : 343 - 346
  • [44] Enhanced ultra-low-frequency interlayer shear modes in folded graphene layers
    Cong, Chunxiao
    Yu, Ting
    NATURE COMMUNICATIONS, 2014, 5
  • [45] Enhanced ultra-low-frequency interlayer shear modes in folded graphene layers
    Chunxiao Cong
    Ting Yu
    Nature Communications, 5
  • [46] Low-frequency surface waves in a structured magnetized dusty plasma
    Ostrikov, KN
    Vladimirov, SV
    Yu, MY
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1999, 104 (A1) : 593 - 596
  • [47] Low-frequency drift wave instabilities in a magnetized dusty plasma
    Salimullah, M
    Salahuddin, M
    Mamun, AA
    ASTROPHYSICS AND SPACE SCIENCE, 1998, 262 (02) : 215 - 222
  • [48] Eigen Ultra-Low-Frequency Magnetosonic Oscillations of the Near Plasma Sheet
    A. S. Leonovich
    V. A. Mazur
    Cosmic Research, 2008, 46 : 327 - 334
  • [49] Eigen ultra-low-frequency magnetosonic oscillations of the near plasma sheet
    Leonovich, A. S.
    Mazur, V. A.
    COSMIC RESEARCH, 2008, 46 (04) : 327 - 334
  • [50] 3D wave propagation and an ultra-low-frequency instability in magnetopause
    Saleem, H
    Mahmood, S
    JOURNAL OF FUSION ENERGY, 2001, 20 (1-2) : 61 - 67