Kakutani-type fixed point theorems: A survey

被引:0
|
作者
I. Namioka
机构
[1] University of Washington,Department of Mathematics
来源
Journal of Fixed Point Theory and Applications | 2011年 / 9卷
关键词
Primary 47-03; 47H10; 54H25; Secondary 37B05; The Markov–Kakutani fixed point theorem; Kakutani’s fixed point theorem; Ryll-Nardzewski’s fixed point theorem; Furstenberg’s fixed point theorem;
D O I
暂无
中图分类号
学科分类号
摘要
A Kakutani-type fixed point theorem refers to a theorem of the following kind: Given a group or semigroup S of continuous affine transformations s : Q → Q, where Q is a nonempty compact convex subset of a Hausdorff locally convex linear topological space, then under suitable conditions S has a common fixed point in Q, i.e., a point \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a \in Q}$$\end{document} such that s(a) = a for each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${s \in S}$$\end{document}. In 1938, Kakutani gave two conditions under each of which a common fixed point of S in Q exists. They are (1) the condition that S be a commutative semigroup, and (2) the condition that S be an equicontinuous group. The present survey discusses subsequent generalizations of Kakutani’s two theorems above.
引用
收藏
页码:1 / 23
页数:22
相关论文
共 50 条
  • [21] Fixed point theorems for Kannan type mappings
    Jarosław Górnicki
    Journal of Fixed Point Theory and Applications, 2017, 19 : 2145 - 2152
  • [22] Compression fixed point theorems of operator type
    Richard I. Avery
    John R. Graef
    Xueyan Liu
    Journal of Fixed Point Theory and Applications, 2015, 17 : 83 - 97
  • [23] Fixed point theorems for α-ψ-contractive type mappings
    Samet, Bessem
    Vetro, Calogero
    Vetro, Pasquale
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) : 2154 - 2165
  • [24] Fixed point theorems for Kannan type mappings
    Gornicki, Jaroslaw
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (03) : 2145 - 2152
  • [25] On the theorems of altman-type fixed point
    Zhang, Guo-Wei
    Shan, Shan
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2009, 30 (12): : 1800 - 1802
  • [26] A SURVEY ON THE FIXED POINT THEOREMS VIA ADMISSIBLE MAPPING
    Karapinar, Erdal
    3C TIC, 2022, 11 (02): : 26 - 50
  • [27] MAIA TYPE FIXED POINT THEOREMS FOR PRESIC TYPE OPERATORS
    Balazs, Margareta-Eliza
    FIXED POINT THEORY, 2019, 20 (01): : 59 - 70
  • [28] A Unification of Geraghty Type and Ciric Type Fixed Point Theorems
    Li, Shu-fang
    He, Fei
    Lu, Ning
    FILOMAT, 2022, 36 (08) : 2605 - 2616
  • [29] CONDITIONS FOR THE UNIQUENESS OF THE FIXED-POINT IN KAKUTANI THEOREM
    SCHIRMER, H
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1981, 24 (03): : 351 - 357
  • [30] Some generalizations of fixed point theorems and common fixed point theorems
    Jo, Jang Hyun
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (04)