Kakutani-type fixed point theorems: A survey

被引:0
|
作者
I. Namioka
机构
[1] University of Washington,Department of Mathematics
关键词
Primary 47-03; 47H10; 54H25; Secondary 37B05; The Markov–Kakutani fixed point theorem; Kakutani’s fixed point theorem; Ryll-Nardzewski’s fixed point theorem; Furstenberg’s fixed point theorem;
D O I
暂无
中图分类号
学科分类号
摘要
A Kakutani-type fixed point theorem refers to a theorem of the following kind: Given a group or semigroup S of continuous affine transformations s : Q → Q, where Q is a nonempty compact convex subset of a Hausdorff locally convex linear topological space, then under suitable conditions S has a common fixed point in Q, i.e., a point \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a \in Q}$$\end{document} such that s(a) = a for each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${s \in S}$$\end{document}. In 1938, Kakutani gave two conditions under each of which a common fixed point of S in Q exists. They are (1) the condition that S be a commutative semigroup, and (2) the condition that S be an equicontinuous group. The present survey discusses subsequent generalizations of Kakutani’s two theorems above.
引用
收藏
页码:1 / 23
页数:22
相关论文
共 50 条
  • [1] Kakutani-type fixed point theorems: A survey
    Namioka, I.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2011, 9 (01) : 1 - 23
  • [3] A Survey of Fixed Point Theorems Under Pata-Type Conditions
    Choudhury, Binayak S.
    Kadelburg, Zoran
    Metiya, Nikhilesh
    Radenovic, Stojan
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (02) : 1289 - 1309
  • [4] A Survey of Fixed Point Theorems Under Pata-Type Conditions
    Binayak S. Choudhury
    Zoran Kadelburg
    Nikhilesh Metiya
    Stojan Radenović
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 1289 - 1309
  • [5] Ciric type fixed point theorems
    Petrusel, Adrian
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2014, 59 (02): : 233 - 245
  • [6] ON THE FIXED POINT THEOREMS OF CARISTI TYPE
    Zhang, Guowei
    Jiang, Dan
    FIXED POINT THEORY, 2013, 14 (02): : 523 - 529
  • [7] Edelstein type fixed point theorems
    Erdal Karapınar
    Fixed Point Theory and Applications, 2012
  • [8] FIXED POINT THEOREMS OF TYPE KRASNOSELSKI
    REINERMANN, J
    MATHEMATISCHE ZEITSCHRIFT, 1971, 119 (04) : 339 - +
  • [9] Edelstein type fixed point theorems
    Karapinar, Erdal
    FIXED POINT THEORY AND APPLICATIONS, 2012,
  • [10] EDELSTEIN TYPE FIXED POINT THEOREMS
    Karapinar, Erdal
    ANNALS OF FUNCTIONAL ANALYSIS, 2011, 2 (01): : 51 - 58