Twistorial monopoles & chiral algebras

被引:0
|
作者
Niklas Garner
Natalie M. Paquette
机构
[1] University of Washington,Department of Physics
关键词
Nonperturbative Effects; Supersymmetric Gauge Theory; Scattering Amplitudes; Wilson, ’t Hooft and Polyakov loops;
D O I
暂无
中图分类号
学科分类号
摘要
We initiate the study of how the insertion of magnetically charged states in 4d self-dual gauge theories impacts the 2d chiral algebras supported on the celestial sphere at asymptotic null infinity, from the point of view of the 4d/2d twistorial correspondence introduced by Costello and the second author. By reducing the 6d twistorial theory to a 3d holomorphic-topological theory with suitable boundary conditions, we can motivate certain non-perturbative enhancements of the celestial chiral algebra corresponding to extensions by modules arising from 3d boundary monopole operators. We also identify the insertion of 4d (non-abelian) monopoles with families of spectral flow automorphisms of the celestial chiral algebra.
引用
收藏
相关论文
共 50 条
  • [31] FUSION RULES OF CHIRAL ALGEBRAS
    GABERDIEL, M
    NUCLEAR PHYSICS B, 1994, 417 (1-2) : 130 - 150
  • [32] Chiral algebras from Ω-deformation
    Jihwan Oh
    Junya Yagi
    Journal of High Energy Physics, 2019
  • [33] Surface defects and chiral algebras
    Cordova, Clay
    Gaiotto, Davide
    Shao, Shu-Heng
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (05):
  • [34] Interplay of monopoles and chiral symmetry breaking in noncompact lattice QED
    Kogut, JB
    Wang, KC
    PHYSICAL REVIEW D, 1996, 53 (03) : 1513 - 1522
  • [35] Controllable orbital angular momentum monopoles in chiral topological semimetals
    Yen, Yun
    Krieger, Jonas A.
    Yao, Mengyu
    Robredo, Inigo
    Manna, Kaustuv
    Yang, Qun
    McFarlane, Emily C.
    Shekhar, Chandra
    Borrmann, Horst
    Stolz, Samuel
    Widmer, Roland
    Groning, Oliver
    Strocov, Vladimir N.
    Parkin, Stuart S. P.
    Felser, Claudia
    Vergniory, Maia G.
    Schuler, Michael
    Schroeter, Niels B. M.
    NATURE PHYSICS, 2024, 20 (12) : 1912 - 1918
  • [36] HARMONIC MAPS AND TWISTORIAL STRUCTURES
    Deschamps, G.
    Loubeau, E.
    Pantilie, R.
    MATHEMATIKA, 2020, 66 (01) : 112 - 124
  • [37] Twistorial construction of minimal hypersurfaces
    Davidov, Johann
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2014, 11 (06)
  • [38] TWISTORIAL CONSTRUCTIONS OF HARMONIC MAPS
    EELLS, J
    SALAMON, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1983, 296 (15): : 685 - 687
  • [39] Clear correlation between monopoles and the chiral condensate in SU(3) QCD
    Ohata, Hiroki
    Suganuma, Hideo
    PHYSICAL REVIEW D, 2021, 103 (05)
  • [40] Monopoles and the chiral phase transition in SU(2) lattice gauge theory
    Wensley, R
    NUCLEAR PHYSICS B, 1997, : 538 - 540