Litter removal reduced soil nitrogen mineralization in repeated freeze-thaw cycles

被引:0
|
作者
Yulian Yang
Li Zhang
Xinyu Wei
Ya Chen
Wanqin Yang
Bo Tan
Kai Yue
Xiangyin Ni
Fuzhong Wu
机构
[1] Sichuan Agricultural University,Long
[2] Mianyang Normal University,Term Research Station of Alpine Forest Ecosystems, Key Laboratory of Ecological Forestry Engineering, Institute of Ecology and Forestry
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Repeated freeze-thaw cycles (FTCs) can alter the relationships between plant litter and soil nitrogen (N) mineralization in subalpine ecosystems, but little information is available about the underlying mechanisms. Therefore, a controlled soil incubation experiment was carried out to study the effects of litter removal on soil N mineralization during FTCs, and the results indicated that FTCs promoted soil N mineralization more than the continuously frozen or nonfrozen condition did. Litter removal promoted soil ammonium N (NH4+-N) and dissolved organic N (DON) as well as the cumulative N mineralization (CNM) and ammonification, but it reduced the soil microbial biomass N (MBN) in the early stage of FTCs. With an increasing number of FTCs, litter removal significantly reduced the CNM but increased the soil MBN. The modified first-order kinetics model was verified under incubation conditions and predicted a lower soil N mineralization rate in FTCs with litter removal. In addition, the dominant factor impacting soil N mineralization was soil NO3−-N, and soil MBN had a greater influence on soil N mineralization when litter remained than when it was removed. These results further clarify the mechanism driving the effect of plant residues on soil N cycling.
引用
收藏
相关论文
共 50 条
  • [42] Effect of repeated freeze-thaw cycles on urinary albumin-to-creatinine ratio
    Bao, Yunfei
    Zuo, Li
    SCANDINAVIAN JOURNAL OF CLINICAL & LABORATORY INVESTIGATION, 2009, 69 (08): : 886 - 888
  • [43] Application of Triangular Polypropylene Fibres on Soil Subjected to Freeze-Thaw Cycles
    Chaduvula U.
    Desai A.K.
    Solanki C.H.
    Indian Geotechnical Journal, 2014, 44 (03) : 351 - 356
  • [44] Growth of cyanobacterial soil crusts during diurnal freeze-thaw cycles
    Schmidt, Steven K.
    Vimercati, Lara
    JOURNAL OF MICROBIOLOGY, 2019, 57 (04) : 243 - 251
  • [45] Effects of freeze-thaw cycles on High Arctic soil bacterial communities
    Lim, P. P.
    Pearce, D. A.
    Convey, P.
    Lee, L. S.
    Chan, K. G.
    Tan, G. Y. A.
    POLAR SCIENCE, 2020, 23
  • [46] Role of Macropores for Soil Compaction Restoring during Freeze-thaw Cycles
    He T.
    Zhang H.
    Zhang D.
    Liu H.
    Kong M.
    Ding Q.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2023, 54 (10): : 340 - 347
  • [47] Growth of cyanobacterial soil crusts during diurnal freeze-thaw cycles
    Steven K. Schmidt
    Lara Vimercati
    Journal of Microbiology, 2019, 57 : 243 - 251
  • [48] Characteristics of soil freeze-thaw cycles and their effects on water enrichment in the rhizosphere
    Ala Musa
    Liu Ya
    Wang Anzhi
    Niu Cunyang
    GEODERMA, 2016, 264 : 132 - 139
  • [49] Effect of Freeze-Thaw Cycles on Bacterial Communities of Arctic Tundra Soil
    Mannisto, Minna K.
    Tiirola, Marja
    Haggblom, Max M.
    MICROBIAL ECOLOGY, 2009, 58 (03) : 621 - 631
  • [50] Effects of Freeze-Thaw Cycles on the Mechanical Properties and Microstructure of a Dispersed Soil
    Zhang, Shurui
    Xu, Xin
    Dong, Xiaoqiang
    Lei, Haomin
    Sun, Xun
    APPLIED SCIENCES-BASEL, 2023, 13 (17):