Fermat's Variational Principle for Anisotropic Inhomogeneous Media

被引:0
|
作者
Vlastislav Červený
机构
[1] Charles University,Department of Geophysics
来源
关键词
Fermat's principle; anisotropic media; Lagrangian; Hamiltonian; Finsler space; wave propagation metric tensor;
D O I
暂无
中图分类号
学科分类号
摘要
Fermat's variational principle states that the signal propagates from point S to R along a curve which renders Fermat's functional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{I}$$ \end{document}(l) stationary. Fermat's functional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{I}$$ \end{document}(l) depends on curves l which connect points S and R, and represents the travel times from S to R along l. In seismology, it is mostly expressed by the integral \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{I}$$ \end{document}(l) = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\smallint _S^R \mathcal{L}$$ \end{document}(xk,xk')du, taken along curve l, where ℒ(xk,xk') is the relevant Lagrangian, xk are coordinates, u is a parameter used to specify the position of points along l, and xk' = dxk÷du. If Lagrangian ℒ(xk,xk') is a homogeneous function of the first degree in xk', Fermat's principle is valid for arbitrary monotonic parameter u. We than speak of the first-degree Lagrangian ℒ(1)(xk,xk'). It is shown that the conventional Legendre transform cannot be applied to the first-degree Lagrangian ℒ(1)(xk,xk') to derive the relevant Hamiltonian ℋ(1)(xk,pk), and Hamiltonian ray equations. The reason is that the Hessian determinant of the transform vanishes identically for first-degree Lagrangians ℒ(1)(xk,xk'). The Lagrangians must be modified so that the Hessian determinant is different from zero. A modification to overcome this difficulty is proposed in this article, and is based on second-degree Lagrangians ℒ(2). Parameter u along the curves is taken to correspond to travel time τ, and the second-degree Lagrangian ℒ(2)(xk,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot x$$ \end{document}k) is then introduced by the relation ℒ(2)(xk,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot x$$ \end{document}k) = [ℒ(1)(xk,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot x$$ \end{document}k)]2, with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot x$$ \end{document}k = dxk÷dτ. The second-degree Lagrangian ℒ(2)(xk,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot x$$ \end{document}k) yields the same Euler/Lagrange equations for rays as the first-degree Lagrangian ℒ(1)(xk,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot x$$ \end{document}k). The relevant Hessian determinant, however, does not vanish identically. Consequently, the Legendre transform can then be used to compute Hamiltonian ℋ(2)(xk,pk) from Lagrangian ℒ(2)(xk,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot x$$ \end{document}k), and vice versa, and the Hamiltonian canonical equations can be derived from the Euler-Lagrange equations. Both ℒ(2)(xk,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot x$$ \end{document}k) and ℋ(2)(xk,pk) can be expressed in terms of the wave propagation metric tensor gij(xk,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot x$$ \end{document}k), which depends not only on position xk, but also on the direction of vector \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot x$$ \end{document}k. It is defined in a Finsler space, in which the distance is measured by the travel time. It is shown that the standard form of the Hamiltonian, derived from the elastodynamic equation and representing the eikonal equation, which has been broadly used in the seismic ray method, corresponds to the second-degree Lagrangian ℒ(2)(xk,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot x$$ \end{document}k), not to the first-degree Lagrangian ℒ(1)(xk,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot x$$ \end{document}k). It is also shown that relations ℒ(2)(xk,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot x$$ \end{document}k) = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ - \frac{1}{2}$$ \end{document}; and ℋ(2)(xk,pk) = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ - \frac{1}{2}$$ \end{document} are valid at any point of the ray and that they represent the group velocity surface and the slowness surface, respectively. All procedures and derived equations are valid for general anisotropic inhomogeneous media, and for general curvilinear coordinates xi. To make certain procedures and equations more transparent and objective, the simpler cases of isotropic and ellipsoidally anisotropic media are briefly discussed as special cases.
引用
收藏
页码:567 / 588
页数:21
相关论文
共 50 条
  • [21] Use of Fermat's principle to aid the interpretation of the ultrasonic inspection of anisotropic welds
    Connolly, G. D.
    Lowe, M. J. S.
    Rokhlin, S. I.
    Temple, J. A. G.
    REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOL 27A AND 27B, 2008, 975 : 1018 - +
  • [22] Anisotropic Fermat's principle for controlling hyperbolic van der Waals polaritons
    Tao, Sicen
    Hou, Tao
    Zeng, Yali
    Hu, Guangwei
    Ge, Zixun
    Liao, Junke
    Zhu, Shan
    Zhang, Tan
    Qiu, Cheng-Wei
    Chen, Huanyang
    PHOTONICS RESEARCH, 2022, 10 (10) : B14 - B22
  • [23] An insight into Fermat's principle via acoustic propagation in inhomogeneous air temperature field
    Li, Yanqin
    Wang, Fei
    Jia, Shaoqi
    Mario, Fidel C. X.
    PHYSICS OF FLUIDS, 2025, 37 (01)
  • [24] Regarding Fermat's principle
    Raveau, C
    JOURNAL DE PHYSIQUE ET LE RADIUM, 1921, 2 : 159 - 160
  • [25] Green's functions for inhomogeneous weakly anisotropic media
    Psencik, I
    GEOPHYSICAL JOURNAL INTERNATIONAL, 1998, 135 (01) : 279 - 288
  • [26] Fermat's principle, the general eikonal equation, and space geometry in a static anisotropic medium
    Shen, Wenda
    Zhang, Jufang
    Wang, Shitao
    Zhu, Shitong
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1997, 14 (10):
  • [27] Fermat's principle, the general eikonal equation, and space geometry in a static anisotropic medium
    Shen, WD
    Zhang, JF
    Wang, ST
    Zhu, ST
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1997, 14 (10): : 2850 - 2854
  • [28] Fermat's principle of least time in the presence of uniformly moving boundaries and media
    Gjurchinovski, Aleksandar
    Skeparovski, Aleksandar
    EUROPEAN JOURNAL OF PHYSICS, 2007, 28 (05) : 933 - 951
  • [29] Radiation principle for inhomogeneous media
    Eidus, D
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (03) : 1458 - 1477
  • [30] Radiation principle for inhomogeneous media
    Eidus, D.
    Journal of Mathematical Physics, 39 (03):