Limit theorems for decoherent two dimensional quantum walks

被引:0
|
作者
Clement Ampadu
机构
来源
关键词
Limit theorems; Decoherence; Quantum random walk;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the model with decoherence operators introduced by Brun et al. (Phys Rev A 67:032304, 2003) which has recently been considered in the two-dimensional setting by Ampadu (Commun Theor Phys, 2011) to obtain the limit of the decoherent quantum walk.
引用
收藏
页码:1921 / 1929
页数:8
相关论文
共 50 条
  • [31] Decoherence in two-dimensional quantum walks
    Oliveira, A. C.
    Portugal, R.
    Donangelo, R.
    [J]. PHYSICAL REVIEW A, 2006, 74 (01):
  • [32] Quantum sensing of noises in one and two dimensional quantum walks
    Tian Chen
    Xiong Zhang
    Xiangdong Zhang
    [J]. Scientific Reports, 7
  • [33] Quantum sensing of noises in one and two dimensional quantum walks
    Chen, Tian
    Zhang, Xiong
    Zhang, Xiangdong
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [34] CONDITIONED LIMIT THEOREMS FOR RANDOM-WALKS
    IGLEHART, DL
    [J]. ADVANCES IN APPLIED PROBABILITY, 1975, 7 (02) : 237 - 237
  • [35] LIMIT THEOREMS FOR RANDOM WALKS .2.
    SKOROKHOD, AV
    SLOBODEN.NP
    [J]. THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1966, 11 (01): : 46 - +
  • [36] Stopped Random Walks: Limit Theorems and Applications
    McGonigal, F.
    [J]. JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2011, 62 (01) : 249 - 250
  • [37] LIMIT THEOREMS FOR RANDOM WALKS ON LIE GROUPS
    STROOCK, DW
    VARADHAN, SR
    [J]. SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 1973, 35 (SEP): : 277 - 294
  • [38] Limit theorems and governing equations for Levy walks
    Magdziarz, M.
    Scheffler, H. P.
    Straka, P.
    Zebrowski, P.
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (11) : 4021 - 4038
  • [39] LIMIT THEOREMS FOR STOPPED RANDOM WALKS 2
    FARRELL, RH
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (04): : 860 - &
  • [40] SMALL DRIFT LIMIT THEOREMS FOR RANDOM WALKS
    Schulte-Geers, Ernst
    Stadje, Wolfgang
    [J]. JOURNAL OF APPLIED PROBABILITY, 2017, 54 (01) : 199 - 212