Integral closures of powers of sums of ideals

被引:0
|
作者
Arindam Banerjee
Tài Huy Hà
机构
[1] Indian Institute of Technology,Department of Mathematics
[2] Tulane University,Mathematics Department
来源
关键词
Integral closure; Monomial ideal; Sum of ideals; Power of ideal; Rational power; Depth; Regularity; 13C13; 90C05; 13D07;
D O I
暂无
中图分类号
学科分类号
摘要
Let k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {k}}$$\end{document} be a field, let A and B be polynomial rings over k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {k}}$$\end{document}, and let S=A⊗kB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S= A \otimes _{\mathbb {k}}B$$\end{document}. Let I⊆A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I \subseteq A$$\end{document} and J⊆B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J \subseteq B$$\end{document} be monomial ideals. We establish a binomial expansion for rational powers of I+J⊆S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I+J \subseteq S$$\end{document} in terms of those of I and J. Particularly, for u∈Q+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u \in {\mathbb Q}_+$$\end{document}, we prove that (I+J)u=∑0≤ω≤u,ω∈QIωJu-ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (I+J)_u = \sum _{0 \le \omega \le u, \ \omega \in {\mathbb Q}} I_\omega J_{u-\omega }, \end{aligned}$$\end{document}and that the sum on the right-hand side is a finite sum. This finite sum can be made more precise using jumping numbers of rational powers of I and J. We further give sufficient conditions for this formula to hold for the integral closures of powers of I+J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I+J$$\end{document} in terms of those of I and J. Under these conditions, we provide explicit formulas for the depth and regularity of (I+J)k¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{(I+J)^k}$$\end{document} in terms of those of powers of I and J.
引用
收藏
页码:307 / 323
页数:16
相关论文
共 50 条