Complexities of deep learning-based undersampled MR image reconstruction

被引:0
|
作者
Constant Richard Noordman
Derya Yakar
Joeran Bosma
Frank Frederikus Jacobus Simonis
Henkjan Huisman
机构
[1] Radboud University Medical Center,Diagnostic Image Analysis Group, Department of Medical Imaging
[2] University Medical Center Groningen,Medical Imaging Center, Departments of Radiology, Nuclear Medicine and Molecular Imaging
[3] University of Twente,Magnetic Detection and Imaging Group, Technical Medical Centre
[4] Norwegian University of Science and Technology,Department of Circulation and Medical Imaging
关键词
Algorithm; Artificial intelligence; Deep learning; Image processing (computer-assisted); Magnetic resonance imaging;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Deep learning-based image reconstruction for few-view computed tomography
    Yim, Dobin
    Lee, Seungwan
    Nam, Kibok
    Lee, Dahye
    Kim, Do Kyung
    Kim, Jong-Seok
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2021, 1011
  • [32] A Benchmark Dataset and Deep Learning-Based Image Reconstruction for Electrical Capacitance Tomography
    Zheng, Jin
    Li, Jinku
    Li, Yi
    Peng, Lihui
    [J]. SENSORS, 2018, 18 (11)
  • [33] Iterative feature refinement for accurate undersampled MR image reconstruction
    Wang, Shanshan
    Liu, Jianbo
    Liu, Qiegen
    Ying, Leslie
    Liu, Xin
    Zheng, Hairong
    Liang, Dong
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (09): : 3291 - 3316
  • [34] Improved image quality in CT pulmonary angiography using deep learning-based image reconstruction
    Ann-Christin Klemenz
    Lasse Albrecht
    Mathias Manzke
    Antonia Dalmer
    Benjamin Böttcher
    Alexey Surov
    Marc-André Weber
    Felix G. Meinel
    [J]. Scientific Reports, 14
  • [35] Improved image quality in CT pulmonary angiography using deep learning-based image reconstruction
    Klemenz, Ann-Christin
    Albrecht, Lasse
    Manzke, Mathias
    Dalmer, Antonia
    Boettcher, Benjamin
    Surov, Alexey
    Weber, Marc-Andre
    Meinel, Felix G.
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01)
  • [36] MR Image Reconstruction From Highly Undersampled k-Space Data by Dictionary Learning
    Ravishankar, Saiprasad
    Bresler, Yoram
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (05) : 1028 - 1041
  • [37] Reference-Driven Undersampled MR Image Reconstruction Using Wavelet Sparsity-Constrained Deep Image Prior
    Zhao, Di
    Huang, Yanhu
    Zhao, Feng
    Qin, Binyi
    Zheng, Jincun
    [J]. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2021, 2021
  • [38] Deep learning-based image reconstruction and motion estimation from undersampled radial k-space for real-time MRI-guided radiotherapy
    Terpstra, Maarten L.
    Maspero, Matteo
    d'Agata, Federico
    Stemkens, Bjorn
    Intven, Martijn P. W.
    Lagendijk, Jan J. W.
    van den Berg, Cornelis A. T.
    Tijssen, Rob H. N.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (15):
  • [39] Diagnostic performance of deep learning-based reconstruction algorithm in 3D MR neurography
    Ensle, Falko
    Kaniewska, Malwina
    Tiessen, Anja
    Lohezic, Maelene
    Getzmann, Jonas M.
    Guggenberger, Roman
    [J]. SKELETAL RADIOLOGY, 2023, 52 (12) : 2409 - 2418
  • [40] Undersampled MR image reconstruction using an enhanced recursive residual network
    Bao, Lijun
    Ye, Fuze
    Cai, Congbo
    Wu, Jian
    Zeng, Kun
    van Zij, Peter C. M.
    Chen, Zhong
    [J]. JOURNAL OF MAGNETIC RESONANCE, 2019, 305 : 232 - 246