Segregating Markov Chains

被引:0
|
作者
Timo Hirscher
Anders Martinsson
机构
[1] Chalmers University of Technology,
[2] University of Gothenburg,undefined
来源
关键词
Markov chain; Non-Markovian coupling; Total variation distance; Coupling inequality; Primary 60J10; Secondary 60C05;
D O I
暂无
中图分类号
学科分类号
摘要
Dealing with finite Markov chains in discrete time, the focus often lies on convergence behavior and one tries to make different copies of the chain meet as fast as possible and then stick together. There are, however, discrete finite (reducible) Markov chains, for which two copies started in different states can be coupled to meet almost surely in finite time, yet their distributions keep a total variation distance bounded away from 0, even in the limit as time tends to infinity. We show that the supremum of total variation distance kept in this context is 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tfrac{1}{2}$$\end{document}.
引用
下载
收藏
页码:1512 / 1538
页数:26
相关论文
共 50 条
  • [31] Perturbed Markov chains
    Solan, E
    Vieille, N
    JOURNAL OF APPLIED PROBABILITY, 2003, 40 (01) : 107 - 122
  • [32] Decoherence for Markov chains
    Fidaleo, Francesco
    Vincenzi, Elia
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2023, 95 (05) : 867 - 877
  • [33] Factorization of Markov chains
    Yengibarian, NB
    JOURNAL OF THEORETICAL PROBABILITY, 2004, 17 (02) : 459 - 481
  • [34] Eager Markov chains
    Abdulla, Parosh Aziz
    Henda, Noomene Ben
    Mayr, Richard
    Sandberg, Sven
    AUTOMATED TECHNOLOGY FOR VERIFICATION AND ANALYSIS, PROCEEDINGS, 2006, 4218 : 24 - 38
  • [35] A problem on Markov chains
    Giannessi, F
    RAIRO-OPERATIONS RESEARCH, 2002, 36 (02): : 173 - 173
  • [36] On Evidential Markov Chains
    Soubaras, Helene
    FOUNDATIONS OF REASONING UNDER UNCERTAINTY, 2010, 249 : 247 - 264
  • [37] Entangled Markov chains
    Luigi Accardi
    Francesco Fidaleo
    Annali di Matematica Pura ed Applicata (1923 -), 2005, 184 : 327 - 346
  • [38] Appendix on Markov Chains
    不详
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 233 (1096) : 81 - 84
  • [39] Heuristics as Markov chains
    Carlos Linares López
    Annals of Mathematics and Artificial Intelligence, 2015, 73 : 275 - 309
  • [40] Triplet Markov chains
    Pieczynski, W
    COMPTES RENDUS MATHEMATIQUE, 2002, 335 (03) : 275 - 278