Segregating Markov Chains

被引:0
|
作者
Timo Hirscher
Anders Martinsson
机构
[1] Chalmers University of Technology,
[2] University of Gothenburg,undefined
来源
关键词
Markov chain; Non-Markovian coupling; Total variation distance; Coupling inequality; Primary 60J10; Secondary 60C05;
D O I
暂无
中图分类号
学科分类号
摘要
Dealing with finite Markov chains in discrete time, the focus often lies on convergence behavior and one tries to make different copies of the chain meet as fast as possible and then stick together. There are, however, discrete finite (reducible) Markov chains, for which two copies started in different states can be coupled to meet almost surely in finite time, yet their distributions keep a total variation distance bounded away from 0, even in the limit as time tends to infinity. We show that the supremum of total variation distance kept in this context is 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tfrac{1}{2}$$\end{document}.
引用
收藏
页码:1512 / 1538
页数:26
相关论文
共 50 条
  • [1] Segregating Markov Chains
    Hirscher, Timo
    Martinsson, Anders
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (03) : 1512 - 1538
  • [2] Markov models—Markov chains
    Jasleen K. Grewal
    Martin Krzywinski
    Naomi Altman
    [J]. Nature Methods, 2019, 16 : 663 - 664
  • [3] On Markov chains
    Chan, K. C.
    Lenard, C. T.
    Mills, T. M.
    [J]. MATHEMATICAL GAZETTE, 2013, 97 (540): : 515 - 520
  • [4] Markov Chains
    Haran, Shai M. J.
    [J]. ARITHMETICAL INVESTIGATIONS: REPRESENTATION THEORY, ORTHOGONAL POLYNOMIALS, AND QUANTUM INTERPOLATIONS, 2008, 1941 : 33 - 46
  • [5] Markov models-Markov chains
    Grewal, Jasleen K.
    Krzywinski, Martin
    Altman, Naomi
    [J]. NATURE METHODS, 2019, 16 (08) : 663 - 664
  • [6] Constraint Markov Chains
    Caillaud, Benoit
    Delahaye, Benoit
    Larsen, Kim G.
    Legay, Axel
    Pedersen, Mikkel L.
    Wasowski, Andrzej
    [J]. THEORETICAL COMPUTER SCIENCE, 2011, 412 (34) : 4373 - 4404
  • [7] Unpredictability in Markov chains
    Akhmet, Marat
    [J]. CARPATHIAN JOURNAL OF MATHEMATICS, 2022, 38 (01) : 13 - 19
  • [8] MARKOV TAIL CHAINS
    Janssen, A.
    Segers, J.
    [J]. JOURNAL OF APPLIED PROBABILITY, 2014, 51 (04) : 1133 - 1153
  • [9] SYMMETRIC MARKOV CHAINS
    SILVERSTEIN, ML
    [J]. ANNALS OF PROBABILITY, 1974, 2 (04): : 681 - 701
  • [10] On the Fibonacci Markov chains
    Benazzouz, H.
    Mouline, M.
    Rachidi, M.
    [J]. JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2008, 11 (01) : 89 - 98