Half-Heusler alloys RuMnZ (Z = P, As ) are studied in the framework of Density Functional Theory (DFT). Structural, electronic, magnetic, and optical properties are calculated and analyzed using the WIEN2k simulation code. All the calculations are done using the full potential linearized augmented plane wave (FP-LAPW) method. Equilibrium lattice parameters are found to be in the range 5.5–5.6 Å. Band gaps of the compounds and density of states (DoS) analysis reveal that the minority spin-down states are semi-conducting while the majority spin-up states are conducting confirming the half-metallic nature of the compounds. Hence, at Fermi level, states are 100 % polarized. The value of the total magnetic moment is found to be 2, i.e., MTot = 2μB. Several optical properties, including dielectric function, reflectivity, refractive index, conductivity, and absorption coefficient are calculated as well. It is revealed from the imaginary part of the dielectric function that the compounds are optically metallic.