Quantum Graphs: Coulomb-Type Potentials and Exactly Solvable Models

被引:0
|
作者
Yuriy Golovaty
机构
[1] Ivan Franko National University of Lviv,Department of Mechanics and Mathematics
来源
Annales Henri Poincaré | 2023年 / 24卷
关键词
Schrödinger operator; Coulomb potential; -Potential; Quantum graph; Vertex coupling condition; Solvable model; Point interaction; Primary 34L40; 81Q35; Secondary 34E10; 81Q10;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Schrödinger operators on a non-compact star graph with the Coulomb-type potentials having singularities at the vertex. The convergence of regularized Hamiltonians Hε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\varepsilon $$\end{document} with cutoff Coulomb potentials coupled with (αδ+βδ′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha \delta +\beta \delta ')$$\end{document}-like ones is investigated. The 1D Coulomb potential and the δ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta '$$\end{document}-potential are very sensitive to their regularization method. The conditions of the norm resolvent convergence of Hε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\varepsilon $$\end{document} depending on the regularization are established. The limit Hamiltonians give the Schrödinger operators with the Coulomb-type potentials in a mathematically precise meaning, ensuring the correct choice of vertex conditions. We also describe all self-adjoint realizations of the formal Coulomb Hamiltonians on the star graph.
引用
收藏
页码:2557 / 2585
页数:28
相关论文
共 50 条
  • [1] QUANTUM GRAPHS: COULOMB-TYPE POTENTIALS AND EXACTLY SOLVABLE MODELS
    Golovaty, Yuriy
    JOURNAL OF PHYSICAL STUDIES, 2023, 27 (04):
  • [2] Quantum Graphs: Coulomb-Type Potentials and Exactly Solvable Models
    Golovaty, Yuriy
    ANNALES HENRI POINCARE, 2023, 24 (08): : 2557 - 2585
  • [3] EXACTLY SOLVABLE POTENTIALS AND QUANTUM ALGEBRAS
    SPIRIDONOV, V
    PHYSICAL REVIEW LETTERS, 1992, 69 (03) : 398 - 401
  • [4] A unified treatment of exactly solvable and quasi-exactly solvable quantum potentials
    Bagchi, B
    Ganguly, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (11): : L161 - L167
  • [5] Exactly solvable quantum mechanical potentials: An alternative approach
    Pronchik, JN
    Williams, BW
    JOURNAL OF CHEMICAL EDUCATION, 2003, 80 (08) : 918 - 926
  • [6] ON EXACTLY SOLVABLE POTENTIALS
    CHANG, D
    CHANG, WF
    CHINESE JOURNAL OF PHYSICS, 1995, 33 (05) : 493 - 504
  • [7] Exactly solvable quantum potentials with special functions solutions
    Pena, J. J.
    Ovando, G.
    Morales, J.
    Garcia-Ravelo, J.
    Garcia, J.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2008, 108 (10) : 1750 - 1757
  • [8] Thermalization and quantum correlations in exactly solvable models
    Cazalilla, Miguel A.
    Iucci, Anibal
    Chung, Ming-Chiang
    PHYSICAL REVIEW E, 2012, 85 (01):
  • [9] Exactly solvable models and dynamic quantum systems
    Velicheva, EP
    Suz'ko, AA
    THEORETICAL AND MATHEMATICAL PHYSICS, 1998, 115 (01) : 458 - 478
  • [10] Exactly solvable models with time-dependent potentials
    Suzko, AA
    PHYSICS LETTERS A, 2003, 308 (04) : 267 - 279