An approximation algorithm for the general max-min resource sharing problem

被引:0
|
作者
Klaus Jansen
机构
[1] Universität zu Kiel,Institut für Informatik und Praktische Mathematik
来源
Mathematical Programming | 2006年 / 106卷
关键词
Approximation Algorithm; Potential Function; Step Length; Approximation Ratio; Price Vector;
D O I
暂无
中图分类号
学科分类号
摘要
We propose an approximation algorithm for, the general max-min resource sharing problem with M nonnegative concave constraints on a convex set B. The algorithm is based on a Lagrangian decomposition method and it uses a c-approximation algorithm (called approximate block solver) for a simpler maximization problem over the convex set B. We show that our algorithm achieves within [inline-graphic not available: see fulltext] iterations or calls to the approximate block solver a solution for the general max-min resource sharing problem with approximation ratio [inline-graphic not available: see fulltext] The algorithm is faster and simpler than the previous known approximation algorithms for the problem [12, 13]
引用
收藏
页码:547 / 566
页数:19
相关论文
共 50 条
  • [41] On a Max-min Problem Concerning Weights of Edges
    Stanislav Jendrol'
    Ingo Schiermeyer
    [J]. Combinatorica, 2001, 21 : 351 - 359
  • [42] Exact Algorithms for the Max-Min Dispersion Problem
    Akagi, Toshihiro
    Araki, Tetsuya
    Horiyama, Takashi
    Nakano, Shin-ichi
    Okamoto, Yoshio
    Otachi, Yota
    Saitoh, Toshiki
    Uehara, Ryuhei
    Uno, Takeaki
    Wasa, Kunihiro
    [J]. FRONTIERS IN ALGORITHMICS (FAW 2018), 2018, 10823 : 263 - 272
  • [43] A NOTE ON NONLINEAR FRACTIONAL MAX-MIN PROBLEM
    STANCUMINASIAN, IM
    PATKAR, V
    [J]. NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 1985, 8 (02): : 39 - 41
  • [44] Modified Max-Min Algorithm for Game Theory
    Ranga, Virender
    Dave, Mayank
    Verma, Anil Kumar
    [J]. 2015 5TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING & COMMUNICATION TECHNOLOGIES ACCT 2015, 2015, : 153 - 156
  • [45] Polynomial-time Combinatorial Algorithm for General Max-Min Fair Allocation
    Ko, Sheng-Yen
    Chen, Ho-Lin
    Cheng, Siu-Wing
    Hon, Wing-Kai
    Liao, Chung-Shou
    [J]. ALGORITHMICA, 2024, 86 (02) : 485 - 504
  • [46] Polynomial Approximation Schemes for the Max-Min Allocation Problem under a Grade of Service Provision
    Li, Jianping
    Li, Weidong
    Li, Jianbo
    [J]. COMBINATORIAL OPTIMIZATION AND APPLICATIONS, PROCEEDINGS, 2009, 5573 : 1 - +
  • [47] Regular summability methods in the approximation by max-min operators
    Gokcer, Turkan Yeliz
    Duman, Oktay
    [J]. FUZZY SETS AND SYSTEMS, 2022, 426 : 106 - 120
  • [48] POLYNOMIAL APPROXIMATION SCHEMES FOR THE MAX-MIN ALLOCATION PROBLEM UNDER A GRADE OF SERVICE PROVISION
    Li, Jianping
    Li, Weidong
    Li, Jianbo
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2009, 1 (03) : 355 - 368
  • [49] A Max-Min Ant System algorithm to solve the Software Project Scheduling Problem
    Crawford, Broderick
    Soto, Ricardo
    Johnson, Franklin
    Monfroy, Eric
    Paredes, Fernando
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (15) : 6634 - 6645
  • [50] A Deterministic Algorithm for Min-max and Max-min Linear Fractional Programming Problems
    Qigao Feng
    Hongwei Jiao
    Hanping Mao
    Yongqiang Chen
    [J]. International Journal of Computational Intelligence Systems, 2011, 4 (2) : 134 - 141