Local dynamics of conformal vector fields

被引:0
|
作者
Charles Frances
机构
[1] Université Paris-Sud,Laboratoire de Mathématiques
来源
Geometriae Dedicata | 2012年 / 158卷
关键词
Conformal vector fields; Pseudo-Riemannian structures; 53A30; 53C50;
D O I
暂无
中图分类号
学科分类号
摘要
We study pseudo-Riemannian conformal vector fields in the neighborhood of a singularity. For Riemannian manifolds, we prove that if a conformal vector field vanishing at a point x0 is not Killing for a metric in the conformal class, then a neighborhood of the singularity x0 is conformally flat.
引用
收藏
页码:35 / 59
页数:24
相关论文
共 50 条
  • [1] Local dynamics of conformal vector fields
    Frances, Charles
    GEOMETRIAE DEDICATA, 2012, 158 (01) : 35 - 59
  • [2] Zeros of conformal vector fields
    Hall, GS
    Capocci, MS
    Beig, R
    CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (03) : L49 - L52
  • [3] Conformal vector fields on spacetimes
    Michael Steller
    Annals of Global Analysis and Geometry, 2006, 29 : 293 - 311
  • [4] Conformal vector fields on spacetimes
    Steller, Michael
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2006, 29 (04) : 293 - 317
  • [5] Essential conformal vector fields
    Capocci, MS
    CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (03) : 927 - 935
  • [6] Conformal vector fields and conformal transformations on a Riemannian manifold
    Deshmukh, Sharief
    Al-Solamy, Falleh R.
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2012, 17 (01): : 9 - 16
  • [7] Conformal vector fields on Finsler manifolds
    Xia, Qiaoling
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2020, 31 (12)
  • [8] Conformal vector fields on Kaehler manifolds
    Deshmukh S.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2011, 57 (1) : 17 - 26
  • [9] Normal forms for conformal vector fields
    Frances, Charles
    Melnick, Karin
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2013, 141 (03): : 377 - 421
  • [10] Conformal vector fields on a Riemannian manifold
    Deshmukh, Sharief
    Al-Solamy, Falleh R.
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2014, 19 (02): : 86 - 93