Arboreal Galois representations

被引:0
|
作者
Nigel Boston
Rafe Jones
机构
[1] University of Wisconsin,
来源
Geometriae Dedicata | 2007年 / 124卷
关键词
Galois representation; Rooted tree; Tree automorphisms; Pro-p group; Iterates; Monodromy groups; 11F80; 11R32; 20E08; 20E18;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\mathbb{Q}}$$\end{document} be the absolute Galois group of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{Q}$$\end{document}, and let T be the complete rooted d-ary tree, where d ≥ 2. In this article, we study “arboreal” representations of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\mathbb{Q}}$$\end{document} into the automorphism group of T, particularly in the case d =  2. In doing so, we propose a parallel to the well-developed and powerful theory of linear p-adic representations of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_\mathbb{Q}$$\end{document}. We first give some methods of constructing arboreal representations and discuss a few results of other authors concerning their size in certain special cases. We then discuss the analogy between arboreal and linear representations of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\mathbb{Q}}$$\end{document}. Finally, we present some new examples and conjectures, particularly relating to the question of which subgroups of Aut(T) can occur as the image of an arboreal representation of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\mathbb{Q}}$$\end{document}.
引用
收藏
页码:27 / 35
页数:8
相关论文
共 50 条