On Stoll’s criterion for the maximality of quadratic arboreal Galois representations

被引:0
|
作者
Hua-Chieh Li
机构
[1] National Taiwan Normal University,Department of Mathematics
来源
Archiv der Mathematik | 2021年 / 117卷
关键词
Arboreal Galois representation; Automorphism group; Wreath product; Primary 37P05; 11R32; Secondary 11A07;
D O I
暂无
中图分类号
学科分类号
摘要
We show that for a quadratic polynomial f(x)=x2-c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x)=x^2-c$$\end{document}, where c=(8k+2)(8k+3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c=(8k+2)(8k+3)$$\end{document} or c=(4k+1)(4k+2)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c=(4k+1)(4k+2)+1$$\end{document} with k∈N∪{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\in {\mathbb {N}}\cup \{0\}$$\end{document}, the Galois group of the splitting field of each iterate fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^n$$\end{document} of f is isomorphic to the automorphism group of a complete binary rooted tree of height n.
引用
收藏
页码:133 / 140
页数:7
相关论文
共 50 条