We give a duality for the variety of bounded distributive lattices that is not full (and therefore not strong) although it is full but not strong at the finite level. While this does not give a complete solution to the “Full vs Strong” Problem, which dates back to the beginnings of natural duality theory in 1980, it does solve it at the finite level. One consequence of this result is that although there is a Duality Compactness Theorem, which says that if an alter ego of finite type yields a duality at the finite level then it yields a duality, there cannot be a corresponding Full Duality Compactness Theorem.