Existence Uniqueness Theorems for Multi-Term Fractional Delay Differential Equations

被引:0
|
作者
Sangita Choudhary
Varsha Daftardar-Gejji
机构
[1] Savitribai Phule Pune University Ganeshkhind,Dept. of Mathematics
关键词
Primary; 26A33; Secondary; 33E12; 34A08; 34K37; Caputo derivative; Green function; existence-uniqueness theorem; fractional delay differential equation; periodic boundary condition;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we analyze non-linear multi-term fractional delay differential Equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{array}{l} L\left( D \right)u\left( t \right) = f\left( {t,u\left( t \right),u\left( {t - \tau } \right)} \right),\;t \in \left[ {0,T} \right] > 0, \\ u\left( t \right) = g\left( t \right),\;t \in \left[ { - \tau ,0} \right], \\ \end{array}$$\end{document} where L(D) = λncDαn + λn−1cDα−1 + ··· + λ1cDα0 + λ0cDα0, λi ∈ ∝ (i = 0, 1, ···, n), λ0, λn ≠ 0, 0 ≤ α0 < α1 < ··· < λn−1 < λn < 1, and cDα denotes the Caputo fractional derivative of order a. The Schaefer fixed point theorem and Banach contraction principle are used to investigate the existence and uniqueness of solutions for above equation with periodic/ anti-periodic boundary conditions.
引用
收藏
页码:1113 / 1127
页数:14
相关论文
共 50 条
  • [21] Existence and uniqueness for fractional neutral differential equations with infinite delay
    Zhou, Yong
    Jiao, Feng
    Li, Jing
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) : 3249 - 3256
  • [22] Existence and uniqueness of fractional functional differential equations with unbounded delay
    Zhou, Yong
    [J]. INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2008, 1 (04) : 239 - 244
  • [23] Existence of solutions of multi-term fractional differential equations with impulse effects on a half line
    Liu, Yuji
    [J]. NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2017, 22 (05): : 679 - 701
  • [24] Solving existence results in multi-term fractional differential equations via fixed points
    Panda, Sumati Kumari
    Nisar, Kottakkaran Sooppy
    Vijayakumar, Velusamy
    Hazarika, Bipan
    [J]. RESULTS IN PHYSICS, 2023, 51
  • [25] On Nonlinear Analysis for Multi-term Delay Fractional Differential Equations Under Hilfer Derivative
    Ahmad, Dildar
    Ali, Amjad
    Shah, Kamal
    Abdalla, Bahaaeldin
    Abdeljawad, Thabet
    [J]. COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024,
  • [26] On multi-term proportional fractional differential equations and inclusions
    Wafa Shammakh
    Hadeel Z. Alzumi
    Zahra Albarqi
    [J]. Advances in Difference Equations, 2020
  • [27] EXISTENCE AND UNIQUENESS THEOREMS FOR SEQUENTIAL LINEAR CONFORMABLE FRACTIONAL DIFFERENTIAL EQUATIONS
    Gokdogan, Ahmet
    Unal, Emrah
    Celik, Ercan
    [J]. MISKOLC MATHEMATICAL NOTES, 2016, 17 (01) : 267 - 279
  • [28] Numerical solution of multi-term fractional differential equations
    Katsikadelis, John T.
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2009, 89 (07): : 593 - 608
  • [29] On multi-term proportional fractional differential equations and inclusions
    Shammakh, Wafa
    Alzumi, Hadeel Z.
    Albarqi, Zahra
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [30] Existence and Hyers-Ulam Stability for a Multi-Term Fractional Differential Equation with Infinite Delay
    Chen, Chen
    Dong, Qixiang
    [J]. MATHEMATICS, 2022, 10 (07)