Existence Uniqueness Theorems for Multi-Term Fractional Delay Differential Equations

被引:0
|
作者
Sangita Choudhary
Varsha Daftardar-Gejji
机构
[1] Savitribai Phule Pune University Ganeshkhind,Dept. of Mathematics
关键词
Primary; 26A33; Secondary; 33E12; 34A08; 34K37; Caputo derivative; Green function; existence-uniqueness theorem; fractional delay differential equation; periodic boundary condition;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we analyze non-linear multi-term fractional delay differential Equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{array}{l} L\left( D \right)u\left( t \right) = f\left( {t,u\left( t \right),u\left( {t - \tau } \right)} \right),\;t \in \left[ {0,T} \right] > 0, \\ u\left( t \right) = g\left( t \right),\;t \in \left[ { - \tau ,0} \right], \\ \end{array}$$\end{document} where L(D) = λncDαn + λn−1cDα−1 + ··· + λ1cDα0 + λ0cDα0, λi ∈ ∝ (i = 0, 1, ···, n), λ0, λn ≠ 0, 0 ≤ α0 < α1 < ··· < λn−1 < λn < 1, and cDα denotes the Caputo fractional derivative of order a. The Schaefer fixed point theorem and Banach contraction principle are used to investigate the existence and uniqueness of solutions for above equation with periodic/ anti-periodic boundary conditions.
引用
收藏
页码:1113 / 1127
页数:14
相关论文
共 50 条
  • [1] EXISTENCE UNIQUENESS THEOREMS FOR MULTI-TERM FRACTIONAL DELAY DIFFERENTIAL EQUATIONS
    Choudhary, Sangita
    Daftardar-Gejji, Varsha
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (05) : 1113 - 1127
  • [2] Existence and uniqueness for a class of multi-term fractional differential equations
    Li, Qiuping
    Hou, Chuanxia
    Sun, Liying
    Han, Zhenlai
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 53 (1-2) : 383 - 395
  • [3] Existence and uniqueness for a class of multi-term fractional differential equations
    Qiuping Li
    Chuanxia Hou
    Liying Sun
    Zhenlai Han
    [J]. Journal of Applied Mathematics and Computing, 2017, 53 : 383 - 395
  • [4] EXISTENCE AND UNIQUENESS FOR FRACTIONAL DIFFERENTIAL EQUATIONS WITH MULTIPOINT AND MULTI-TERM INTEGRAL BOUNDARY CONDITIONS
    Djourdem, Habib
    [J]. JOURNAL OF SCIENCE AND ARTS, 2022, (02): : 319 - 330
  • [5] Existence and uniqueness of solutions for multi-term nonlinear fractional integro-differential equations
    Baleanu, Dumitru
    Nazemi, Sayyedeh Zahra
    Rezapour, Shahram
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [6] Existence and uniqueness of solutions for multi-term nonlinear fractional integro-differential equations
    Dumitru Baleanu
    Sayyedeh Zahra Nazemi
    Shahram Rezapour
    [J]. Advances in Difference Equations, 2013
  • [7] Existence and uniqueness of solutions for a coupled system of multi-term nonlinear fractional differential equations
    Sun, Shurong
    Li, Qiuping
    Li, Yanan
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (10) : 3310 - 3320
  • [8] EXISTENCE THEOREMS FOR A COUPLED SYSTEM OF NONLINEAR MULTI-TERM FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS
    Ahmad, Bashir
    Alsaedi, Ahmed
    Alghamdi, Najla
    Ntouyas, Sotiris K.
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2022, 46 (02): : 317 - 331
  • [9] The existence and uniqueness theorems of fuzzy delay differential equations
    Zulkefli, Nor Atirah Izzah
    Maan, Normah
    [J]. MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2014, 10 (03): : 139 - 143
  • [10] Existence and uniqueness of solutions for multi-term fractional q-integro-differential equations via quantum calculus
    Sotiris K. Ntouyas
    Mohammad Esmael Samei
    [J]. Advances in Difference Equations, 2019