Morrey-type estimates for commutator of fractional integral associated with Schrödinger operators on the Heisenberg group

被引:0
|
作者
Vagif S. Guliyev
Ali Akbulut
Faiq M. Namazov
机构
[1] Ahi Evran University,Department of Mathematics
[2] NAS of Azerbaijan,Institute of Mathematics and Mechanics
[3] RUDN University,S.M. Nikolskii Institute of Mathematics
[4] Baku State University,undefined
关键词
Schrödinger operator; Heisenberg group; Central generalized Morrey space; Campanato space; Fractional integral; Commutator; BMO; 22E30; 35J10; 42B35; 47H50;
D O I
暂无
中图分类号
学科分类号
摘要
Let L=−ΔHn+V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L=-\Delta_{\mathbb{H}_{n}}+V$\end{document} be a Schrödinger operator on the Heisenberg group Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{H}_{n}$\end{document}, where the nonnegative potential V belongs to the reverse Hölder class RHq1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$RH_{q_{1}}$\end{document} for some q1≥Q/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q_{1} \ge Q/2$\end{document}, and Q is the homogeneous dimension of Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{H} _{n}$\end{document}. Let b belong to a new Campanato space Λνθ(ρ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda_{\nu }^{ \theta }(\rho )$\end{document}, and let IβL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{I}_{\beta }^{L}$\end{document} be the fractional integral operator associated with L. In this paper, we study the boundedness of the commutators [b,IβL]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[b,\mathcal{I}_{\beta }^{L}]$\end{document} with b∈Λνθ(ρ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b \in \Lambda_{\nu }^{\theta }(\rho )$\end{document} on central generalized Morrey spaces LMp,φα,V(Hn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$LM_{p,\varphi }^{\alpha ,V}(\mathbb{H}_{n})$\end{document}, generalized Morrey spaces Mp,φα,V(Hn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M_{p,\varphi }^{\alpha ,V}(\mathbb{H}_{n})$\end{document}, and vanishing generalized Morrey spaces VMp,φα,V(Hn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$VM_{p,\varphi }^{\alpha ,V}(\mathbb{H}_{n})$\end{document} associated with Schrödinger operator, respectively. When b belongs to Λνθ(ρ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda_{\nu }^{\theta }(\rho )$\end{document} with θ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\theta >0$\end{document}, 0<ν<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\nu <1$\end{document} and (φ1,φ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\varphi_{1},\varphi_{2})$\end{document} satisfies some conditions, we show that the commutator operator [b,IβL]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[b,\mathcal{I}_{\beta }^{L}]$\end{document} is bounded from LMp,φ1α,V(Hn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$LM_{p,\varphi_{1}}^{\alpha ,V}(\mathbb{H}_{n})$\end{document} to LMq,φ2α,V(Hn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$LM_{q,\varphi _{2}}^{\alpha ,V}(\mathbb{H}_{n})$\end{document}, from Mp,φ1α,V(Hn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M_{p,\varphi_{1}}^{\alpha ,V}( \mathbb{H}_{n})$\end{document} to Mq,φ2α,V(Hn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M_{q,\varphi_{2}}^{\alpha ,V}(\mathbb{H}_{n})$\end{document}, and from VMp,φ1α,V(Hn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$VM_{p,\varphi_{1}}^{\alpha ,V}(\mathbb{H}_{n})$\end{document} to VMq,φ2α,V(Hn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$VM_{q, \varphi_{2}}^{\alpha ,V}(\mathbb{H}_{n})$\end{document}, 1/p−1/q=(β+ν)/Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1/p-1/q=(\beta +\nu )/Q$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] The Weighted Estimates of the Schrdinger Operators on the Nilpotent Lie Group
    Ling Juan HANQiao Zhen MA College of Mathematics and Information ScienceNorthwest Normal UniversityGansu PRChina
    数学研究与评论, 2010, 30 (06) : 1117 - 1124
  • [42] Fractional time-dependent Schrödinger equation on the Heisenberg group
    Roman Urban
    Jacek Zienkiewicz
    Mathematische Zeitschrift, 2008, 260 : 931 - 948
  • [43] Fractional integral related to Schrödinger operator on vanishing generalized mixed Morrey spaces
    Guliyev, Vagif S.
    Akbulut, Ali
    Celik, Suleyman
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):
  • [44] The Weighted Lp estimates for the fractional Hardy operator and a class of integral operators on the Heisenberg group
    He, Tianyang
    Liu, Zhiwen
    Yu, Ting
    AIMS MATHEMATICS, 2025, 10 (01): : 858 - 883
  • [45] BLO estimates for Marcinkiewicz integrals associated with Schrödinger operators
    Wenhua Gao
    Lin Tang
    Proceedings - Mathematical Sciences, 2019, 129
  • [46] Some estimates for the Schrödinger type operators with nonnegative potentials
    Yu Liu
    Jianfeng Dong
    Archiv der Mathematik, 2012, 98 : 467 - 475
  • [47] INTERPOLATION THEOREMS FOR NONLINEAR URYSOHN INTEGRAL OPERATORS IN GENERAL MORREY-TYPE SPACES
    Burenkov, V., I
    Nursultanov, E. D.
    EURASIAN MATHEMATICAL JOURNAL, 2020, 11 (04): : 87 - 94
  • [48] Some Estimates for Riesz Transforms Associated with Schrödinger Operators
    Y. H. Wang
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2022, 57 : 380 - 394
  • [49] A Note on Discrete Fractional Integral Operators on the Heisenberg Group
    Pierce, Lillian B.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (01) : 17 - 33
  • [50] Mk-type sharp estimates and boundedness on Morrey space for Toeplitz type operators associated to fractional integral and singular integral operator with general kernel
    Chen, Dazhao
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2015, 6 (03) : 413 - 426