Moreau–Yosida regularization of Lagrangian-dual functions for a class of convex optimization problems

被引:0
|
作者
Fanwen Meng
机构
[1] National University of Singapore,The Logistics Institute – Asia Pacific
来源
关键词
Lagrangian dual; Moreau–Yosida regularization; Piecewise ; functions; Semismoothness; 90C25; 65K10; 52A41;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the Lagrangian dual problem of a class of convex optimization problems, which originates from multi-stage stochastic convex nonlinear programs. We study the Moreau–Yosida regularization of the Lagrangian-dual function and prove that the regularized function η is piecewise C2, in addition to the known smoothness property. This property is then used to investigate the semismoothness of the gradient mapping of the regularized function. Finally, we show that the Clarke generalized Jacobian of the gradient mapping is BD-regular under some conditions.
引用
收藏
相关论文
共 50 条
  • [21] Augmented Lagrangian functions for constrained optimization problems
    Zhou, Y. Y.
    Yang, X. Q.
    JOURNAL OF GLOBAL OPTIMIZATION, 2012, 52 (01) : 95 - 108
  • [22] Augmented Lagrangian functions for constrained optimization problems
    Y. Y. Zhou
    X. Q. Yang
    Journal of Global Optimization, 2012, 52 : 95 - 108
  • [23] Zero duality and saddle points of a class of augmented Lagrangian functions in constrained non-convex optimization
    Liu, Qian
    Yang, Xinmin
    OPTIMIZATION, 2008, 57 (05) : 655 - 667
  • [24] Stochastic traffic assignment, Lagrangian dual, and unconstrained convex optimization
    Xie, Chi
    Waller, S. Travis
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2012, 46 (08) : 1023 - 1042
  • [25] Adaptive Regularization in Convex Composite Optimization for Variational Imaging Problems
    Hong, Byung-Woo
    Koo, Ja-Keoung
    Dirks, Hendrik
    Burger, Martin
    PATTERN RECOGNITION (GCPR 2017), 2017, 10496 : 268 - 280
  • [26] Optimization Solvers for Convex L1-Regularization Problems
    Huang, Tingwei
    2019 INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION, BIG DATA & SMART CITY (ICITBS), 2019, : 657 - 659
  • [27] CLASS OF NON-CONVEX OPTIMIZATION PROBLEMS
    HIRCHE, J
    TAN, HK
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1977, 57 (04): : 247 - 253
  • [28] Approximating optimization problems over convex functions
    Néstor E. Aguilera
    Pedro Morin
    Numerische Mathematik, 2008, 111 : 1 - 34
  • [29] Approximating optimization problems over convex functions
    Aguilera, Nestor E.
    Morin, Pedro
    NUMERISCHE MATHEMATIK, 2008, 111 (01) : 1 - 34
  • [30] Using Conical Regularization in Calculating Lagrangian Estimates in Quadratic Optimization Problems
    Laptin Y.P.
    Berezovskyi O.A.
    Cybernetics and Systems Analysis, 2017, 53 (5) : 712 - 724