Chern–Simons forms on associated bundles, and boundary terms

被引:0
|
作者
David L. Johnson
机构
[1] Lehigh University,Department of Mathematics
来源
Geometriae Dedicata | 2007年 / 128卷
关键词
Characteristic classes; Chern–Simons invariants; 53C05; 57R20; 55R25; 53A55;
D O I
暂无
中图分类号
学科分类号
摘要
Let E be a principle bundle over a compact manifold M with compact structural group G. For any G-invariant polynomial P, the transgressive forms \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$TP(\omega)$$\end{document} defined by Chern and Simons in (Ann. Math. 99:48–69, 1974) are shown to extend to forms \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi P(\omega)$$\end{document} on associated bundles B with fiber a quotient F = G/H of the group. These forms satisfy a heterotic formula \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\Phi P(\omega)=P(\Omega)-P(\Psi),$$\end{document} relating the characteristic form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P(\Omega)$$\end{document} to a fiber-curvature characteristic form. For certain natural bundles B, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P(\Psi)=0$$\end{document} , giving a true transgressive form on the associated bundle, which leads to the standard obstruction properties of characteristic classes as well as natural expressions for boundary terms. These forms also yield new secondary characteristic classes giving refined information about the associated bundles B.
引用
收藏
页码:39 / 54
页数:15
相关论文
共 50 条
  • [21] INDUCED CHERN-SIMONS TERMS AND PARITY ANOMALIES
    REUTER, M
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 1993, (111): : 275 - 291
  • [22] INDUCED CHERN-SIMONS TERMS AT FINITE TEMPERATURE
    POPPITZ, ER
    PHYSICS LETTERS B, 1990, 252 (03) : 417 - 419
  • [23] GRAVITATIONAL DYNAMICS WITH LORENTZ CHERN-SIMONS TERMS
    CAMPBELL, BA
    DUNCAN, MJ
    KALOPER, N
    OLIVE, KA
    NUCLEAR PHYSICS B, 1991, 351 (03) : 778 - 792
  • [24] SUPERSYMMETRIC CHERN-SIMONS TERMS IN 10 DIMENSIONS
    BERGSHOEFF, E
    DEROO, M
    PHYSICS LETTERS B, 1989, 218 (02) : 210 - 215
  • [25] Brane resolution and gravitational Chern-Simons terms
    Brito, FA
    Cvetic, M
    Naqvi, A
    CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (02) : 285 - 301
  • [26] Symmetries and gravitational Chern-Simons Lagrangian terms
    Bonora, L.
    Cvitan, M.
    Prester, P. Dominis
    Pallua, S.
    Smolic, I.
    PHYSICS LETTERS B, 2013, 725 (4-5) : 468 - 472
  • [27] Dimensionally reduced Chern-Simons terms and their solitons
    Jackiw, R
    Pi, SY
    QUANTUM FIELD THEORY: PERSPECTIVE AND PROSPECTIVE, 1999, 530 : 245 - 256
  • [28] RADIATIVELY INDUCED CHERN-SIMONS TERMS ON THE TORUS
    BURGESS, M
    PHYSICAL REVIEW D, 1991, 44 (08): : 2552 - 2557
  • [29] Charges and the boundary in Chern-Simons gravity
    Aros, R
    PHYSICAL REVIEW D, 2006, 73 (04)
  • [30] Maxwell-Chern-Simons theory with a boundary
    Blasi, A.
    Maggiore, N.
    Magnoli, N.
    Storace, S.
    CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (16)