Oriented Interval Greedoids

被引:0
|
作者
Franco Saliola
Hugh Thomas
机构
[1] Université du Québec à Montréal,Département de Mathématiques
[2] University of New Brunswick,Department of Mathematics and Statistics
来源
关键词
Interval greedoid; Oriented matriod; Antimatroid; Convex geometry; Sphericity theorem; CW sphere;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a definition of an oriented interval greedoid that simultaneously generalizes the notion of an oriented matroid and the construction on antimatroids introduced by L.J. Billera, S.K. Hsiao, and J.S. Provan in Enumeration in convex geometries and associated polytopal subdivisions of spheres (Discrete Comput. Geom. 39(1–3):123–137, 2008). As for oriented matroids, associated to each oriented interval greedoid is a spherical simplicial complex whose face enumeration depends only on the underlying interval greedoid.
引用
收藏
页码:64 / 105
页数:41
相关论文
共 50 条
  • [31] On interval colouring reorientation number of oriented graphs
    Borowiecka-Olszewska, Marta
    Drgas-Burchardt, Ewa
    Zuazua, Rita
    DISCRETE APPLIED MATHEMATICS, 2025, 360 : 65 - 80
  • [32] A Class of Greedy Algorithms and Its Relation to Greedoids
    Nedunuri, Srinivas
    Smith, Douglas R.
    Cook, William R.
    THEORETICAL ASPECTS OF COMPUTING, 2010, 6255 : 352 - +
  • [33] LINEAR OBJECTIVE FUNCTIONS ON CERTAIN CLASSES OF GREEDOIDS
    GOETSCHEL, RH
    DISCRETE APPLIED MATHEMATICS, 1986, 14 (01) : 11 - 16
  • [34] BASIS GRAPHS OF GREEDOIDS AND 2-CONNECTIVITY
    KORTE, B
    LOVASZ, L
    MATHEMATICAL PROGRAMMING STUDY, 1985, 24 (OCT): : 158 - 165
  • [35] ON A GENERALIZATION OF THE RADO-HALL THEOREM TO GREEDOIDS
    DING, LJ
    YUE, MY
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 1987, 4 (01) : 28 - 38
  • [36] Uncertain constrained optimization by interval-oriented algorithm
    Karmakar, Samiran
    Bhunia, Asoke Kumar
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2014, 65 (01) : 73 - 87
  • [37] Solving interval DEA model and ranking based on interval-oriented and grey incidence degree
    Wang, Jie-Fang
    Liu, Si-Feng
    Fang, Zhi-Geng
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2009, 31 (09): : 2146 - 2150
  • [38] Sharp bounds for the oriented diameters of interval graphs and 2-connected proper interval graphs
    Huang, Jing
    Ye, Dong
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 3, PROCEEDINGS, 2007, 4489 : 353 - +
  • [39] MINOR CHARACTERIZATION OF UNDIRECTED BRANCHING GREEDOIDS - A SHORT PROOF
    GOECKE, O
    SCHRADER, R
    DISCRETE MATHEMATICS, 1990, 82 (01) : 93 - 99
  • [40] Interval oriented multi-section techniques for global optimization
    Karmakar, S.
    Mahato, S. K.
    Bhunia, A. K.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 224 (02) : 476 - 491