Convergence of tail sum for records

被引:0
|
作者
Bose A. [1 ]
Gangopadhyay S. [1 ]
Maulik K. [1 ]
Sarkar A. [2 ]
机构
[1] Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, Kolkata 700108
[2] Theoretical Statistics and Mathematics Unit, Indian Statistical Institute (Delhi Centre), New Delhi 110016
关键词
Π-varying function; Domain of attraction; Records; Regularly varying function;
D O I
10.1007/s10687-006-0012-0
中图分类号
学科分类号
摘要
Suppose { Rn(L) (F) : n ≥ 1} is the sequence of lower records from a distribution F, where F is continuous with { x ∞ supp(F)} = 0. We derive conditions under which logarithm of the tail sum of records, ∑j=n ∞ R n (L) (F), properly centered and scaled, converge weakly. We also prove two results on Π-varying and regularly varying functions, which are of independent interest. © Springer Science+Business Media, LLC 2006.
引用
收藏
页码:151 / 168
页数:17
相关论文
共 50 条
  • [31] CONVERGENCE AND SUM FACTORS FOR SERIES OF COMPLEX NUMBERS
    CALABI, E
    DVORETZKY, A
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 55 (03) : 280 - 280
  • [32] The Uniform Convergence of the Sum of Independent Random Variables
    郑祖康
    [J]. Acta Mathematica Sinica., 1989, (03) - 222
  • [33] Second order tail asymptotics for the sum of dependent, tail-independent regularly varying risks
    Dominik Kortschak
    [J]. Extremes, 2012, 15 : 353 - 388
  • [34] Second order tail asymptotics for the sum of dependent, tail-independent regularly varying risks
    Kortschak, Dominik
    [J]. EXTREMES, 2012, 15 (03) : 353 - 388
  • [35] On the convergence of a two-dimensional trigonometric sum
    Muller, W
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 205 (02) : 500 - 507
  • [36] Push-Sum on Random Graphs: Almost Sure Convergence and Convergence Rate
    Rezaienia, Pouya
    Gharesifard, Bahman
    Linder, Tamas
    Touri, Behrouz
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (03) : 1295 - 1302
  • [37] The tail behaviour of a random sum of subexponential random variables and vectors
    Daley D.J.
    Omey E.
    Vesilo R.
    [J]. Extremes, 2007, 10 (1-2) : 21 - 39
  • [38] Right Tail Approximation for the Distribution of Lognormal Sum and Its Applications
    Zhu, Bingcheng
    Zhang, Zaichen
    Wang, Lei
    Dang, Jian
    Wu, Liang
    Cheng, Julian
    Li, Geoffrey Ye
    [J]. 2020 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2020,
  • [39] Some improved tail bounds for the sum of variables with geometric distribution
    Lu, Dawei
    Liu, Qing
    Shen, Xinmei
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (22) : 5427 - 5435
  • [40] INVARIANCE FOR THE TAIL OF HYBRIDS OF EMPIRICAL AND PARTIAL-SUM PROCESSES
    Alvarez-Andrade, Sergio
    [J]. REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 52 (03): : 305 - 313