Tail probabilities of random linear functions of regularly varying random vectors

被引:0
|
作者
Bikramjit Das
Vicky Fasen-Hartmann
Claudia Klüppelberg
机构
[1] Singapore University of Technology and Design,Engineering Systems and Design
[2] Karlsruhe Institute of Technology,Institute for Stochastics
[3] Technical University of Munich,Center for Mathematical Sciences
来源
Extremes | 2022年 / 25卷
关键词
Bipartite graphs; Heavy-tails; Multivariate regular variation; Networks; 60B10; 60F10; 60G70; 90B15;
D O I
暂无
中图分类号
学科分类号
摘要
We provide a new extension of Breiman’s Theorem on computing tail probabilities of a product of random variables to a multivariate setting. In particular, we give a characterization of regular variation on cones in [0,∞)d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,\infty )^d$$\end{document} under random linear transformations. This allows us to compute probabilities of a variety of tail events, which classical multivariate regularly varying models would report to be asymptotically negligible. We illustrate our findings with applications to risk assessment in financial systems and reinsurance markets under a bipartite network structure.
引用
收藏
页码:721 / 758
页数:37
相关论文
共 50 条