Regularly varying random fields

被引:13
|
作者
Wu, Lifan [1 ]
Samorodnitsky, Gennady [1 ]
机构
[1] Cornell Univ, Sch Operat Res & Informat Engn, Ithaca, NY 14853 USA
关键词
Regular variation; Random field; Tail field; Spectral field; Extremal index; Brown-Resnick random field; EXTREMAL INDEX; STATIONARY; DEPENDENCE; MAXIMA;
D O I
10.1016/j.spa.2020.01.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the extremes of multivariate regularly varying random fields. The crucial tools in our study are the tail field and the spectral field, notions that extend the tail and spectral processes of Basrak and Segers (2009). The spatial context requires multiple notions of extremal index, and the tail and spectral fields are applied to clarify these notions and other aspects of extremal clusters. An important application of the techniques we develop is to the Brown-Resnick random fields. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:4470 / 4492
页数:23
相关论文
共 50 条
  • [1] Extremes of Gaussian random fields with regularly varying dependence structure
    Krzysztof Dȩbicki
    Enkelejd Hashorva
    Peng Liu
    Extremes, 2017, 20 : 333 - 392
  • [2] Extremes of Gaussian random fields with regularly varying dependence structure
    Debicki, Krzysztof
    Hashorva, Enkelejd
    Liu, Peng
    EXTREMES, 2017, 20 (02) : 333 - 392
  • [3] Extremes for stationary regularly varying random fields over arbitrary index sets
    Passeggeri, Riccardo
    Wintenberger, Olivier
    EXTREMES, 2024, 27 (02) : 247 - 314
  • [4] Palm theory for extremes of stationary regularly varying time series and random fields
    Hrvoje Planinić
    Extremes, 2023, 26 : 45 - 82
  • [5] Palm theory for extremes of stationary regularly varying time series and random fields
    Planinic, Hrvoje
    EXTREMES, 2023, 26 (01) : 45 - 82
  • [6] Extremes for stationary regularly varying random fields over arbitrary index sets
    Riccardo Passeggeri
    Olivier Wintenberger
    Extremes, 2024, 27 : 247 - 314
  • [7] Extremes of Levy-driven spatial random fields with regularly varying Levy measure
    Ronn-Nielsen, Anders
    Stehr, Mads
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2021, 150 : 19 - 49
  • [8] Iterated random functions and regularly varying tails
    Damek, Ewa
    Dyszewski, Piotr
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2018, 24 (09) : 1503 - 1520
  • [9] Branching random walks with regularly varying perturbations
    Kowalski, Krzysztof
    ESAIM-PROBABILITY AND STATISTICS, 2024, 28 : 379 - 391
  • [10] Tail probabilities of random linear functions of regularly varying random vectors
    Das, Bikramjit
    Fasen-Hartmann, Vicky
    Klueppelberg, Claudia
    EXTREMES, 2022, 25 (04) : 721 - 758