Identifying similar-bicliques in bipartite graphs

被引:0
|
作者
Kai Yao
Lijun Chang
Jeffrey Xu Yu
机构
[1] The University of Sydney,
[2] The Chinese University of Hong Kong,undefined
来源
The VLDB Journal | 2024年 / 33卷
关键词
Maximal similar-biclique enumeration; Maximal biclique enumeration; Branch-reduce-and-bound; Structural similarity; Large bipartite graph;
D O I
暂无
中图分类号
学科分类号
摘要
Bipartite graphs have been widely used to model the relationship between entities of different types, where vertices are partitioned into two disjoint sets/sides. Finding dense subgraphs in a bipartite graph is of great significance and encompasses many applications. However, none of the existing dense bipartite subgraph models consider similarity between vertices from the same side, and as a result, the identified results may include vertices that are not similar to each other. In this work, we formulate the notion of similar-biclique which is a special kind of biclique where all vertices from a designated side are similar to each other and aim to enumerate all similar-bicliques. The naive approach of first enumerating all maximal bicliques and then extracting all maximal similar-bicliques from them is inefficient, as enumerating maximal bicliques is already time consuming. We propose a backtracking algorithm MSBE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf{MSBE}$$\end{document} to directly enumerate maximal similar-bicliques and power it by vertex reduction and optimization techniques. In addition, we design a novel index structure to speed up a time-critical operation of MSBE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf{MSBE}$$\end{document}, as well as to speed up vertex reduction. Efficient index construction algorithms are developed. To handle dynamic graph updates, we also propose algorithms and optimization techniques for maintaining our index. Finally, we parallelize our index construction algorithms to exploit multiple CPU cores. Extensive experiments on 17 bipartite graphs as well as case studies are conducted to demonstrate the effectiveness and efficiency of our model and algorithms.
引用
收藏
页码:703 / 726
页数:23
相关论文
共 50 条
  • [1] Identifying Similar-Bicliques in Bipartite Graphs
    Yao, Kai
    Chang, Lijun
    Yu, Jeffrey Xu
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 15 (11): : 3085 - 3097
  • [2] Identifying similar-bicliques in bipartite graphs
    Yao, Kai
    Chang, Lijun
    Yu, Jeffrey Xu
    VLDB JOURNAL, 2024, 33 (03): : 703 - 726
  • [3] Finding maximum edge bicliques in convex bipartite graphs
    Nussbaum, Doron
    Pu, Shuye
    Sack, Jörg-Rüdiger
    Uno, Takeaki
    Zarrabi-Zadeh, Hamid
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2010, 6196 LNCS : 140 - 149
  • [4] Finding Maximum Edge Bicliques in Convex Bipartite Graphs
    Nussbaum, Doron
    Pu, Shuye
    Sack, Joerg-Ruediger
    Uno, Takeaki
    Zarrabi-Zadeh, Hamid
    ALGORITHMICA, 2012, 64 (02) : 311 - 325
  • [5] Finding Maximum Edge Bicliques in Convex Bipartite Graphs
    Nussbaum, Doron
    Pu, Shuye
    Sack, Joerg-Ruediger
    Uno, Takeaki
    Zarrabi-Zadeh, Hamid
    COMPUTING AND COMBINATORICS, 2010, 6196 : 140 - +
  • [6] Maximum Edge Bicliques in Tree Convex Bipartite Graphs
    Chen, Hao
    Liu, Tian
    FRONTIERS IN ALGORITHMICS, FAW 2017, 2017, 10336 : 47 - 55
  • [7] Finding Maximum Edge Bicliques in Convex Bipartite Graphs
    Doron Nussbaum
    Shuye Pu
    Jörg-Rüdiger Sack
    Takeaki Uno
    Hamid Zarrabi-Zadeh
    Algorithmica, 2012, 64 : 311 - 325
  • [8] Enumerating maximal bicliques in bipartite graphs with favorable degree sequences
    Damaschke, Peter
    INFORMATION PROCESSING LETTERS, 2014, 114 (06) : 317 - 321
  • [9] On Maximising the Vertex Coverage for Top-k t-Bicliques in Bipartite Graphs
    Abidi, Aman
    Chen, Lu
    Liu, Chengfei
    Zhou, Rui
    2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), 2022, : 2346 - 2358
  • [10] Tabu search with graph reduction for finding maximum balanced bicliques hock for in bipartite graphs
    Zhou, Yi
    Hao, Jin-Kao
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2019, 77 : 86 - 97