Finding Maximum Edge Bicliques in Convex Bipartite Graphs

被引:0
|
作者
Doron Nussbaum
Shuye Pu
Jörg-Rüdiger Sack
Takeaki Uno
Hamid Zarrabi-Zadeh
机构
[1] Carleton University,School of Computer Science
[2] Hospital for Sick Children,Program in Molecular Structure and Function
[3] National Institute of Informatics,Department of Computer Engineering
[4] Sharif University of Technology,undefined
来源
Algorithmica | 2012年 / 64卷
关键词
Bicliques; Convex bipartite graphs; Biconvex graphs; Bipartite permutation graphs;
D O I
暂无
中图分类号
学科分类号
摘要
A bipartite graph G=(A,B,E) is convex on B if there exists an ordering of the vertices of B such that for any vertex v∈A, vertices adjacent to v are consecutive in B. A complete bipartite subgraph of a graph G is called a biclique of G. Motivated by an application to analyzing DNA microarray data, we study the problem of finding maximum edge bicliques in convex bipartite graphs. Given a bipartite graph G=(A,B,E) which is convex on B, we present a new algorithm that computes a maximum edge biclique of G in O(nlog 3nlog log n) time and O(n) space, where n=|A|. This improves the current O(n2) time bound available for the problem. We also show that for two special subclasses of convex bipartite graphs, namely for biconvex graphs and bipartite permutation graphs, a maximum edge biclique can be computed in O(nα(n)) and O(n) time, respectively, where n=min (|A|,|B|) and α(n) is the slowly growing inverse of the Ackermann function.
引用
收藏
页码:311 / 325
页数:14
相关论文
共 50 条
  • [1] Finding maximum edge bicliques in convex bipartite graphs
    Nussbaum, Doron
    Pu, Shuye
    Sack, Jörg-Rüdiger
    Uno, Takeaki
    Zarrabi-Zadeh, Hamid
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2010, 6196 LNCS : 140 - 149
  • [2] Finding Maximum Edge Bicliques in Convex Bipartite Graphs
    Nussbaum, Doron
    Pu, Shuye
    Sack, Joerg-Ruediger
    Uno, Takeaki
    Zarrabi-Zadeh, Hamid
    ALGORITHMICA, 2012, 64 (02) : 311 - 325
  • [3] Finding Maximum Edge Bicliques in Convex Bipartite Graphs
    Nussbaum, Doron
    Pu, Shuye
    Sack, Joerg-Ruediger
    Uno, Takeaki
    Zarrabi-Zadeh, Hamid
    COMPUTING AND COMBINATORICS, 2010, 6196 : 140 - +
  • [4] Maximum Edge Bicliques in Tree Convex Bipartite Graphs
    Chen, Hao
    Liu, Tian
    FRONTIERS IN ALGORITHMICS, FAW 2017, 2017, 10336 : 47 - 55
  • [5] Tabu search with graph reduction for finding maximum balanced bicliques hock for in bipartite graphs
    Zhou, Yi
    Hao, Jin-Kao
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2019, 77 : 86 - 97
  • [6] EFFICIENT ALGORITHMS FOR FINDING MAXIMUM MATCHINGS IN CONVEX BIPARTITE GRAPHS AND RELATED PROBLEMS
    LIPSKI, W
    PREPARATA, FP
    ACTA INFORMATICA, 1981, 15 (04) : 329 - 346
  • [7] FINDING MAXIMUM MATCHING FOR BIPARTITE GRAPHS IN PARALLEL
    CHAUDHURI, P
    OPERATIONS RESEARCH LETTERS, 1994, 16 (01) : 47 - 49
  • [8] Identifying Similar-Bicliques in Bipartite Graphs
    Yao, Kai
    Chang, Lijun
    Yu, Jeffrey Xu
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 15 (11): : 3085 - 3097
  • [9] On finding convex cuts in general, bipartite and plane graphs
    Glantz, Roland
    Meyerhenke, Henning
    THEORETICAL COMPUTER SCIENCE, 2017, 695 : 54 - 73
  • [10] Parallel maximum independent set in convex bipartite graphs
    Czumaj, A
    Diks, K
    Przytycka, TM
    INFORMATION PROCESSING LETTERS, 1996, 59 (06) : 289 - 294