Let X ⊂ PN be an integral n-dimensional variety and m(X, P, i) (resp. m(X, i)), 1 ≤ i ≤ N - n + 1, the Hermite invariants of X measuring the osculating behaviour of X at P (resp. at its general point). Here we prove m(X, x) + m(X, y) ≤ m(X, x + y) and m(X, P, x) + m(X, y) ≤ m(X, P, x + y) for all integers x, y such that x + y ≤ N - n + 1, the case n = 1 being known (M. Homma, A. Garcia and E. Esteves).
机构:
Seoul Natl Univ, Dept Math, Seoul 151747, South KoreaSeoul Natl Univ, Dept Math, Seoul 151747, South Korea
Chung, Kiryong
Hong, Jaehyun
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Math, Seoul 151747, South Korea
Seoul Natl Univ, Res Inst Math, Seoul 151747, South KoreaSeoul Natl Univ, Dept Math, Seoul 151747, South Korea
Hong, Jaehyun
Kiem, Young-Hoon
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Math, Seoul 151747, South Korea
Seoul Natl Univ, Res Inst Math, Seoul 151747, South KoreaSeoul Natl Univ, Dept Math, Seoul 151747, South Korea
机构:
Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, JapanUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan