Macmahon's sums-of-divisors and their connection to multiple Eisenstein series

被引:0
|
作者
Bachmann, Henrik [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Nagoya, Japan
关键词
MacMahon's sums-of-divisors; Multiple Eisenstein series; (quasi)modular forms; ZETA VALUES; ALGEBRA; BRACKETS;
D O I
10.1007/s40993-024-00537-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give explicit expressions for MacMahon's generalized sums-of-divisors q-series Ar\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_r$$\end{document} and Cr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_r$$\end{document} by relating them to (odd) multiple Eisenstein series. Recently, these sums-of-divisors have been studied in the context of quasimodular forms, vertex algebras, N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=4$$\end{document}SU(N) Super-Yang-Mills theory, and the study of congruences of partitions. We relate them to a broader mathematical framework and give explicit expressions for both q-series in terms of Eisenstein series and their odd variants.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] MacMahon's sums-of-divisors and allied q-series
    Amdeberhan, Tewodros
    Ono, Ken
    Singh, Ajit
    [J]. ADVANCES IN MATHEMATICS, 2024, 452
  • [2] Extensions of MacMahon's sums of divisors
    Amdeberhan, Tewodros
    Andrews, George E.
    Tauraso, Roberto
    [J]. RESEARCH IN THE MATHEMATICAL SCIENCES, 2024, 11 (01)
  • [3] Extensions of MacMahon’s sums of divisors
    Tewodros Amdeberhan
    George E. Andrews
    Roberto Tauraso
    [J]. Research in the Mathematical Sciences, 2024, 11
  • [4] The connection to eisenstein series
    Rapoport, Michael
    Wedhorn, Torsten
    [J]. ASTERISQUE, 2007, (312) : 191 - 208
  • [5] Eisenstein series and convolution sums
    Zafer Selcuk Aygin
    [J]. The Ramanujan Journal, 2019, 48 : 495 - 508
  • [6] Eisenstein series and convolution sums
    Aygin, Zafer Selcuk
    [J]. RAMANUJAN JOURNAL, 2019, 48 (03): : 495 - 508
  • [7] CONVOLUTION SUMS AND THEIR RELATIONS TO EISENSTEIN SERIES
    Kim, Daeyeoul
    Kim, Aeran
    Sankaranarayanan, Ayyadurai
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (04) : 1389 - 1413
  • [8] On Eisenstein series with characters and Dedekind sums
    Sekine, C
    [J]. ACTA ARITHMETICA, 2005, 116 (01) : 1 - 11
  • [9] EISENSTEIN SERIES AND THE DISTRIBUTION OF DEDEKIND SUMS
    BRUGGEMAN, RW
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1989, 202 (02) : 181 - 198
  • [10] Kloosterman sums and Fourier coefficients of Eisenstein series
    Eren Mehmet Kıral
    Matthew P. Young
    [J]. The Ramanujan Journal, 2019, 49 : 391 - 409