Eisenstein series and convolution sums

被引:0
|
作者
Zafer Selcuk Aygin
机构
[1] Nanyang Technological University,Division of Mathematical Sciences, School of Physical and Mathematical Sciences
来源
The Ramanujan Journal | 2019年 / 48卷
关键词
Sum of divisors function; Convolution sums; Eisenstein series; Dedekind eta function; Eta quotients; Modular forms; Cusp forms; Fourier series; 11A25; 11E20; 11F11; 11F20; 11F30; 11Y35;
D O I
暂无
中图分类号
学科分类号
摘要
We compute Fourier series expansions of weight 2 and weight 4 Eisenstein series at various cusps. Then we use results of these computations to give formulas for the convolution sums ∑a+pb=nσ(a)σ(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sum _{a+p b=n}\sigma (a)\sigma (b)$$\end{document}, ∑p1a+p2b=nσ(a)σ(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sum _{p_1a+p_2 b=n}\sigma (a)\sigma (b)$$\end{document} and ∑a+p1p2b=nσ(a)σ(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sum _{a+p_1 p_2 b=n}\sigma (a)\sigma (b)$$\end{document} where p,p1,p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p, p_1, p_2$$\end{document} are primes.
引用
收藏
页码:495 / 508
页数:13
相关论文
共 50 条
  • [1] Eisenstein series and convolution sums
    Aygin, Zafer Selcuk
    [J]. RAMANUJAN JOURNAL, 2019, 48 (03): : 495 - 508
  • [2] CONVOLUTION SUMS AND THEIR RELATIONS TO EISENSTEIN SERIES
    Kim, Daeyeoul
    Kim, Aeran
    Sankaranarayanan, Ayyadurai
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (04) : 1389 - 1413
  • [3] Deriving Discrete Convolution Sums Through Relationships With Ramanujan-Type Eisenstein Series
    Chandrashekara, Vidya Harekala
    Badanidiyoor, Ashwath Rao
    Bhat, Smitha Ganesh
    [J]. ENGINEERING LETTERS, 2024, 32 (07) : 1500 - 1509
  • [4] On Eisenstein series with characters and Dedekind sums
    Sekine, C
    [J]. ACTA ARITHMETICA, 2005, 116 (01) : 1 - 11
  • [5] EISENSTEIN SERIES AND THE DISTRIBUTION OF DEDEKIND SUMS
    BRUGGEMAN, RW
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1989, 202 (02) : 181 - 198
  • [6] Kloosterman sums and Fourier coefficients of Eisenstein series
    Eren Mehmet Kıral
    Matthew P. Young
    [J]. The Ramanujan Journal, 2019, 49 : 391 - 409
  • [7] Kloosterman sums and Fourier coefficients of Eisenstein series
    Kiral, Eren Mehmet
    Young, Matthew P.
    [J]. RAMANUJAN JOURNAL, 2019, 49 (02): : 391 - 409
  • [8] GENERALIZED EISENSTEIN SERIES AND MODIFIED DEDEKIND SUMS
    BERNDT, BC
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1975, 272 : 182 - 193
  • [9] Dedekind sums arising from newform Eisenstein series
    Stucker, T.
    Vennos, A.
    Young, M. P.
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2020, 16 (10) : 2129 - 2139
  • [10] RESTRICTIONS OF EISENSTEIN SERIES AND RANKIN-SELBERG CONVOLUTION
    Keaton, Rodney
    Pitale, Ameya
    [J]. DOCUMENTA MATHEMATICA, 2019, 24 : 1 - 45