Dynamics of the Chaplygin ball on a rotating plane

被引:0
|
作者
I. A. Bizyaev
A. V. Borisov
I. S. Mamaev
机构
[1] Moscow Institute of Physics and Technology,
[2] Udmurt State University,undefined
[3] Izhevsk State Technical University,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This paper addresses the problem of the Chaplygin ball rolling on a horizontal plane which rotates with constant angular velocity. In this case, the equations of motion admit area integrals, an integral of squared angular momentum and the Jacobi integral, which is a generalization of the energy integral, and possess an invariant measure. After reduction the problem reduces to investigating a three-dimensional Poincaré map that preserves phase volume (with density defined by the invariant measure). We show that in the general case the system’s dynamics is chaotic.
引用
收藏
页码:423 / 433
页数:10
相关论文
共 50 条
  • [31] The problem of drift and recurrence for the rolling Chaplygin ball
    Alexey V. Borisov
    Alexander A. Kilin
    Ivan S. Mamaev
    Regular and Chaotic Dynamics, 2013, 18 : 832 - 859
  • [32] Chaplygin's Ball Rolling Problem Is Hamiltonian
    A. V. Borisov
    I. S. Mamaev
    Mathematical Notes, 2001, 70 : 720 - 723
  • [33] Routh Symmetry in the Chaplygin's Rolling Ball
    Kim, Byungsoo
    REGULAR & CHAOTIC DYNAMICS, 2011, 16 (06): : 663 - 670
  • [34] The dynamics of a Chaplygin sleigh
    Borisov, A. V.
    Mamayev, I. S.
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2009, 73 (02): : 156 - 161
  • [35] INTEGRABLE EULER TOP AND NONHOLONOMIC CHAPLYGIN BALL
    Tsiganov, Andrey
    JOURNAL OF GEOMETRIC MECHANICS, 2011, 3 (03): : 337 - 362
  • [36] The problem of drift and recurrence for the rolling Chaplygin ball
    Borisov, Alexey V.
    Kilin, Alexander A.
    Mamaev, Ivan S.
    REGULAR & CHAOTIC DYNAMICS, 2013, 18 (06): : 832 - 859
  • [37] Integrable Discretization and Deformation of the Nonholonomic Chaplygin Ball
    Tsiganov, Andrey V.
    REGULAR & CHAOTIC DYNAMICS, 2017, 22 (04): : 353 - 367
  • [38] Chaplygin's ball rolling problem is Hamiltonian
    Borisov, AV
    Mamaev, IS
    MATHEMATICAL NOTES, 2001, 70 (5-6) : 720 - 723
  • [39] Integrable discretization and deformation of the nonholonomic Chaplygin ball
    Andrey V. Tsiganov
    Regular and Chaotic Dynamics, 2017, 22 : 353 - 367
  • [40] Dynamics of the generalized penny-model on the rotating plane
    Mikishanina, Evgeniya A.
    EUROPEAN PHYSICAL JOURNAL B, 2023, 96 (12):