Quantum cosmological perfect fluid models in Einstein aether theory

被引:0
|
作者
G. A. Monerat
O. Goldoni
F. G. Alvarenga
G. Oliveira-Neto
E. V. Corrêa Silva
机构
[1] Universidade do Estado do Rio de Janeiro,Departamento de Modelagem Computacional, Instituto Politécnico
[2] Universidade do Estado do Rio de Janeiro,Departamento de Engenharia Mecânica e Energia, Instituto Politécnico
[3] Universidade Federal do Espírito Santo,Departamento de Física, Centro de Ciências Exatas
[4] Universidade Federal de Juiz de Fora,Departamento de Física, Instituto de Ciências Exatas
[5] Universidade do Estado do Rio de Janeiro,Departamento de Matemática Física e Computação, Faculdade de Tecnologia
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The possibility of constructing a consistent quantum theory of gravitation has motivated the recent interest in gravitational theories that break Lorentz invariance, as it is the case of Einstein aether theory. In this work, we employ Schutz variational formalism to obtain a quantum cosmological Einstein aether model for a spatially flat Universe filled with a barotropic fluid with equation of state p=αρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=\alpha \rho $$\end{document}. Solutions to the Wheeler–DeWitt equation are obtained by the superposition of stationary quantum states, yielding finite-norm wave packets. The behavior of the scale factor is studied from the point of view of the many-worlds and of the de Broglie–Bohm interpretations of quantum mechanics, indicating non-singular solutions for α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha < 1$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] Higher Dimensional Cosmological Models Filled with Perfect Fluid in f(R,T) Theory of Gravity
    G. C. Samanta
    S. N. Dhal
    International Journal of Theoretical Physics, 2013, 52 : 1334 - 1344
  • [42] Higher Dimensional Cosmological Models Filled with Perfect Fluid in f(R,T) Theory of Gravity
    Samanta, G. C.
    Dhal, S. N.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (04) : 1334 - 1344
  • [43] Transit cosmological models with perfect fluid and heat flow in Saez-Ballester theory of gravitation
    Sharma, Umesh Kumar
    Zia, Rashid
    Pradhan, Anirudh
    JOURNAL OF ASTROPHYSICS AND ASTRONOMY, 2019, 40 (01)
  • [44] Perfect fluid quantum Universe in the presence of negative cosmological constant
    Pedram, P.
    Mirzaei, M.
    Jalalzadeh, S.
    Gousheh, S. S.
    GENERAL RELATIVITY AND GRAVITATION, 2008, 40 (08) : 1663 - 1681
  • [45] Perfect fluid quantum Universe in the presence of negative cosmological constant
    P. Pedram
    M. Mirzaei
    S. Jalalzadeh
    S. S. Gousheh
    General Relativity and Gravitation, 2008, 40 : 1663 - 1681
  • [46] Quantum perfect fluid cosmological model and its classical analogue
    Batista, AB
    Fabris, JC
    Goncalves, SVB
    Tossa, J
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2002, 17 (20): : 2749 - 2749
  • [47] Cosmological analysis of noninteracting and interacting generalized ghost dark energy in Einstein-Aether gravity theory
    Biswas, Mahasweta
    Debnath, Ujjal
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2022, 37 (05):
  • [48] Plane symmetric cosmological models with perfect fluid and dark energy
    Katore, S. D.
    Adhav, K. S.
    Shaikh, A. Y.
    Sancheti, M. M.
    ASTROPHYSICS AND SPACE SCIENCE, 2011, 333 (01) : 333 - 341
  • [49] Plane symmetric cosmological models with perfect fluid and dark energy
    S. D. Katore
    K. S. Adhav
    A. Y. Shaikh
    M. M. Sancheti
    Astrophysics and Space Science, 2011, 333 : 333 - 341
  • [50] Anisotropic Cosmological Models with Perfect Fluid and Dark Energy Reexamined
    Bijan Saha
    International Journal of Theoretical Physics, 2006, 45 : 952 - 964