Estimation of realized stochastic volatility models using Hamiltonian Monte Carlo-Based methods

被引:0
|
作者
Didit B. Nugroho
Takayuki Morimoto
机构
[1] Satya Wacana Christian University,Department of Mathematics
[2] Kwansei Gakuin University,Department of Mathematical Sciences
来源
Computational Statistics | 2015年 / 30卷
关键词
Realized stochastic volatility model; Hamiltonian Monte Carlo; Inefficiency factor;
D O I
暂无
中图分类号
学科分类号
摘要
This study develops and compares performance of Hamiltonian Monte Carlo (HMC) and Riemann manifold Hamiltonian Monte Carlo (RMHMC) samplers with that of multi-move Metropolis-Hastings sampler to estimate stochastic volatility (SV) and realized SV models with asymmetry effect. In terms of inefficiency factor, empirical results show that the RMHMC sampler give the best performance for estimating parameters, followed by multi-move Metropolis-Hastings sampler. In particular, it is also shown that RMHMC sampler offers a greater advantage in the mixing property of latent volatility chains and in the computational time than HMC sampler.
引用
收藏
页码:491 / 516
页数:25
相关论文
共 50 条
  • [31] Fast strong approximation Monte Carlo schemes for stochastic volatility models
    Kahl, Christian
    Jaeckel, Peter
    QUANTITATIVE FINANCE, 2006, 6 (06) : 513 - 536
  • [32] A mixed PDE/Monte-Carlo method for stochastic volatility models
    Loeper, Gregoire
    Pironneau, Olivier
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (9-10) : 559 - 563
  • [33] Stochastic Gradient Hamiltonian Monte Carlo Methods with Recursive Variance Reduction
    Zou, Difan
    Xu, Pan
    Gu, Quanquan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [34] Realized power variation and stochastic volatility models
    Barndorff-Nielsen, OE
    Shephard, N
    BERNOULLI, 2003, 9 (02) : 243 - 265
  • [35] Fast Monte Carlo-Based Estimation of Analog Parametric Test Metrics
    Stratigopoulos, Haralampos-G.
    Sunter, Stephen
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2014, 33 (12) : 1977 - 1990
  • [36] Simple Factor Realized Stochastic Volatility Models
    Kawakatsu, Hiroyuki
    JOURNAL OF TIME SERIES ECONOMETRICS, 2023, 15 (01) : 79 - 110
  • [37] A Diffusion Monte Carlo-Based Algorithm for Estimation of Higher Modes of a Reactor
    Srivastava, Argala
    Singh, K. P.
    Mallick, Amod Kishore
    Kannan, Umasankari
    Degweker, S. B.
    NUCLEAR SCIENCE AND ENGINEERING, 2019, 193 (09) : 1044 - 1053
  • [38] Monte Carlo option pricing with asymmetric realized volatility dynamics
    Allen, David E.
    McAleer, Michael
    Scharth, Marcel
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2011, 81 (07) : 1247 - 1256
  • [39] Stochastic vs Monte Carlo-based bidding strategy for sequential electricity markets
    Spiller, Matteo
    Rancilio, Giuliano
    Bovera, Filippo
    Merlo, Marco
    2024 20TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM 2024, 2024,
  • [40] Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study
    Andersen, TG
    Chung, HJ
    Sorensen, BE
    JOURNAL OF ECONOMETRICS, 1999, 91 (01) : 61 - 87