The constant current energization accelerated test was carried out to study the effect of asphalt coating on delaying reinforcement corrosion and rust-induced cracks in coated reinforced magnesium oxychloride cement concrete (CRMOCC). CRMOCC with different degrees of damage was scanned by adopting X-ray computed tomography (X-CT) technology, and the spatial information of rust and rust-induced cracks were analyzed visually and quantitatively. In addition, Scanning Electron Microscope (SEM) was used to analyze the non-uniformity of rust-induced crack formation. The results showed that the corrosion amount of coated reinforcement after energization was only 81.6% of that of uncoated reinforcement. Besides, no crack no cracking was observed on CRMOCC after 480h’s energization, while the rust-induced crack of reinforced magnesium oxychloride cement concrete (RMOCC) was 0.11 mm. The coating reduced the potential of rust-induced crack formation such that only three areas in CRMOCC were cracked, while RMOCC had cracks in eight areas. This study also found that interface transition zone (ITZ) played a dominant role in the formation of rust-induced cracks. The surface crack width in CRMOCC had an exponential relation with the crack volume and it had a linear relation with the volume of corrosion products. Further, there was an exponential relation between the volume loss of the reinforcement and the formation of rust-induced cracks. The correlation between surface crack width, corrosion products volume, rust-induced cracks volume and steel volume can be described by quadric surface. Results by SEM analysis indicated that in the ITZ of CRMOCC, Mg and O elements were the two main elements in the hydration products that were loose and needle-like. Furthermore, Si and O elements were the dominant materials in the non-interface transition zone (NITZ), resulting in relatively dense hydration products.