On the Local Eigenvalue Statistics for Random Band Matrices in the Localization Regime

被引:0
|
作者
Peter D. Hislop
M. Krishna
机构
[1] University of Kentucky,Department of Mathematics
[2] Ashoka University,undefined
来源
关键词
Random band matrices; Eigenvalue statistics; Localization;
D O I
暂无
中图分类号
学科分类号
摘要
We study the local eigenvalue statistics ξω,EN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi _{\omega ,E}^N$$\end{document} associated with the eigenvalues of one-dimensional, (2N+1)×(2N+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2N+1) \times (2N+1)$$\end{document} random band matrices with independent, identically distributed, real random variables and band width growing as Nα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^\alpha $$\end{document}, for 0<α<12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< \alpha < \frac{1}{2}$$\end{document}. We consider the limit points associated with the random variables ξω,EN[I]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi _{\omega ,E}^N [I]$$\end{document}, for I⊂R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I \subset \mathbb {R}$$\end{document}, and E∈(-2,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E \in (-2,2)$$\end{document}. For random band matrices with Gaussian distributed random variables and for 0≤α<17\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \le \alpha < \frac{1}{7}$$\end{document}, we prove that this family of random variables has nontrivial limit points for almost every E∈(-2,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E \in (-2,2)$$\end{document}, and that these limit points are Poisson distributed with positive intensities. The proof is based on an analysis of the characteristic functions of the random variables ξω,EN[I]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi _{\omega ,E}^N [I]$$\end{document} and associated quantities related to the intensities, as N tends towards infinity, and employs known localization bounds of (Peled et al. in Int. Math. Res. Not. IMRN 4:1030–1058, 2019, Schenker in Commun Math Phys 290:1065–1097, 2009), and the strong Wegner and Minami estimates (Peled et al. in Int. Math. Res. Not. IMRN 4:1030–1058, 2019). Our more general result applies to random band matrices with random variables having absolutely continuous distributions with bounded densities. Under the hypothesis that the localization bounds hold for 0<α<12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< \alpha < \frac{1}{2}$$\end{document}, we prove that any nontrivial limit points of the random variables ξω,EN[I]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi _{\omega ,E}^N [I]$$\end{document} are distributed according to Poisson distributions.
引用
收藏
相关论文
共 50 条
  • [31] Process convergence of fluctuations of linear eigenvalue statistics of band Toeplitz matrices
    Maurya, Shambhu Nath
    Saha, Koushik
    STATISTICS & PROBABILITY LETTERS, 2020, 166
  • [32] RANDOM COVARIANCE MATRICES: UNIVERSALITY OF LOCAL STATISTICS OF EIGENVALUES
    Tao, Terence
    Vu, Van
    ANNALS OF PROBABILITY, 2012, 40 (03): : 1285 - 1315
  • [33] Universality of local spectral statistics of products of random matrices
    Akemann, Gernot
    Burda, Zdzislaw
    Kieburg, Mario
    PHYSICAL REVIEW E, 2020, 102 (05)
  • [34] Global eigenvalue distribution regime of random matrices with an anharmonic potential and an external source
    A. I. Aptekarev
    V. G. Lysov
    D. N. Tulyakov
    Theoretical and Mathematical Physics, 2009, 159 : 448 - 468
  • [35] Global eigenvalue distribution regime of random matrices with an anharmonic potential and an external source
    Aptekarev, A. I.
    Lysov, V. G.
    Tulyakov, D. N.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 159 (01) : 448 - 468
  • [36] The local relaxation flow approach to universality of the local statistics for random matrices
    Erdos, Laszlo
    Schlein, Benjamin
    Yau, Horng-Tzer
    Yin, Jun
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2012, 48 (01): : 1 - 46
  • [38] Eigenvector Localization for Random Band Matrices with Power Law Band Width
    Jeffrey Schenker
    Communications in Mathematical Physics, 2009, 290 : 1065 - 1097
  • [39] Eigenvalue Statistics of Finite-Dimensional Random Matrices for MIMO Wireless Communications
    Alfano, Giuseppa
    Tulino, Antonia M.
    Lozano, Angel
    Verdu, Sergio
    2006 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-12, 2006, : 4125 - 4129
  • [40] CENTRAL LIMIT THEOREM FOR LINEAR EIGENVALUE STATISTICS OF RANDOM MATRICES WITH INDEPENDENT ENTRIES
    Lytova, A.
    Pastur, L.
    ANNALS OF PROBABILITY, 2009, 37 (05): : 1778 - 1840