Universal weighted kernel-type estimators for some class of regression models

被引:0
|
作者
Igor S. Borisov
Yuliana Yu. Linke
Pavel S. Ruzankin
机构
[1] Sobolev Institute of Mathematics,
[2] Novosibirsk State University,undefined
来源
Metrika | 2021年 / 84卷
关键词
Nonparametric regression; Uniform consistency; Kernel-type estimator; 62G08;
D O I
暂无
中图分类号
学科分类号
摘要
For a wide class of nonparametric regression models with random design, we suggest consistent weighted least square estimators, asymptotic properties of which do not depend on correlation of the design points. In contrast to the predecessors’ results, the design is not required to be fixed or to consist of independent or weakly dependent random variables under the classical stationarity or ergodicity conditions; the only requirement being that the maximal spacing statistic of the design tends to zero almost surely (a.s.). Explicit upper bounds are obtained for the rate of uniform convergence in probability of these estimators to an unknown estimated random function which is assumed to lie in a Hölder space a.s. A Wiener process is considered as an example of such a random regression function. In the case of i.i.d. design points, we compare our estimators with the Nadaraya–Watson ones.
引用
收藏
页码:141 / 166
页数:25
相关论文
共 50 条
  • [41] Convergence in distribution of the L2-deviations of the kernel-type variogram estimators with applications
    Garcia-Soidan, Pilar
    Cotos-Yanez, Tomas R.
    [J]. SPATIAL STATISTICS, 2017, 22 : 338 - 357
  • [42] On deviations between kernel-type estimators of a distribution density in p ≥ 2 independent samples
    Babilua, P. K.
    Nadaraya, E. A.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (02) : 475 - 492
  • [43] SOME PROPERTIES OF A CLASS OF BIASED REGRESSION ESTIMATORS
    LOWERRE, JM
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1977, 303 (06): : 517 - 526
  • [44] Identifying a class of Ridge-type estimators in binary logistic regression models
    Ertan, Esra
    Akay, Kadri Ulas
    [J]. STATISTICS, 2024,
  • [45] Multivariate Universal Local Linear Kernel Estimators in Nonparametric Regression: Uniform Consistency
    Linke, Yuliana
    Borisov, Igor
    Ruzankin, Pavel
    Kutsenko, Vladimir
    Yarovaya, Elena
    Shalnova, Svetlana
    [J]. MATHEMATICS, 2024, 12 (12)
  • [46] Asymptotic normality of kernel type regression estimators for random fields
    Karacsony, Zsolt
    Filzmoser, Peter
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (04) : 872 - 886
  • [47] Improved estimators for a general class of beta regression models
    Simas, Alexandre B.
    Barreto-Souza, Wagner
    Rocha, Andrea V.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (02) : 348 - 366
  • [48] Kernel-weighted GMM estimators for linear time series models
    Kuersteiner, Guido M.
    [J]. JOURNAL OF ECONOMETRICS, 2012, 170 (02) : 399 - 421
  • [49] A general result on the uniform in bandwidth consistency of kernel-type function estimators (vol 20, pg 72, 2011)
    Mason, David M.
    Swanepoel, Jan W. H.
    [J]. TEST, 2015, 24 (01) : 205 - 206
  • [50] Complete consistency for the weighted least squares estimators in semiparametric regression models
    Lv, Yutan
    Yao, Yunbao
    Zhou, Jun
    Li, Xiaoqin
    Yang, Ruiqi
    Wang, Xuejun
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (22) : 7797 - 7818