Special features of calculation for processes of scattering by contrast and strongly absorbing two- and three-dimensional inhomogeneities

被引:0
|
作者
V. A. Burov
E. E. Kasatkina
A. Yu. Poberezhskaya
A. V. Bogatyrev
O. D. Rumyantseva
机构
[1] Moscow State University,Physical Faculty
来源
Acoustical Physics | 2011年 / 57卷
关键词
direct scattering problem; the Lippmann-Schwinger equation; restricting the Green function; secondary sources; scattering amplitude;
D O I
暂无
中图分类号
学科分类号
摘要
A direct problem of scattering for refractive-absorbing scatterers of different shapes and strengths is considered. A rigorous solution for two- and three-dimensional problems and its numerical implementation are obtained on the basis of equations of the Lippmann-Schwinger type in the coordinate space and in the space of special frequencies that is Fourier-conjugate to it. Attention is given to selection of parameters for problem sampling that are fundamentally important for providing adequacy of numerical simulation. Techniques for restricting the Green’s function support and introducing a reserve band are used. The results of numerical calculation for wave fields and secondary sources are given for different scatterers. The major laws connected with the effects of sound wave rescattering are illustrated and discussed.
引用
收藏
页码:681 / 695
页数:14
相关论文
共 50 条
  • [31] The caustics of two- and three-dimensional parabolic reflectors
    Bell, C. G.
    Ockendon, H.
    Ockendon, J. R.
    JOURNAL OF OPTICS, 2010, 12 (06)
  • [32] Dispersive Effects in Two- and Three-Dimensional Peridynamics
    Coclite, A.
    Coclite, G. M.
    Fanizza, G.
    Maddalena, F.
    ACTA APPLICANDAE MATHEMATICAE, 2023, 187 (01)
  • [33] A comparison of two- and three-dimensional wave breaking
    Nepf, HM
    Wu, CH
    Chan, ES
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 1998, 28 (07) : 1496 - 1510
  • [34] Two- and three-dimensional asteroid impact simulations
    Gisler, GR
    Weaver, RP
    Mader, CL
    Gittings, ML
    COMPUTING IN SCIENCE & ENGINEERING, 2004, 6 (03) : 46 - 55
  • [35] Quasiparticle interactions in two- and three-dimensional superconductors
    Coffey, D
    EUROPHYSICS LETTERS, 1997, 40 (05): : 563 - 568
  • [36] Dispersive Effects in Two- and Three-Dimensional Peridynamics
    A. Coclite
    G. M. Coclite
    G. Fanizza
    F. Maddalena
    Acta Applicandae Mathematicae, 2023, 187
  • [37] Two- and Three-dimensional Arrays of Magnetic Microspheres
    Weijia Wen
    Ning Wang
    D. W. Zheng
    C. Chen
    K. N. Tu
    Journal of Materials Research, 1999, 14 : 1186 - 1189
  • [38] Invariants of two- and three-dimensional hyperbolic equations
    Tsaousi, C.
    Sophocleous, C.
    Tracina, R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 349 (02) : 516 - 525
  • [39] Map fragmentation in two- and three-dimensional environments
    Yamahachi, Homare
    Moser, May-Britt
    Moser, Edvard I.
    BEHAVIORAL AND BRAIN SCIENCES, 2013, 36 (05) : 569 - 570
  • [40] Dirac cone in two- and three-dimensional metamaterials
    Sakoda, Kazuaki
    OPTICS EXPRESS, 2012, 20 (04): : 3898 - 3917