Renormalization of the hopping parameters in quasi-one-dimensional conductors in the presence of a magnetic field

被引:0
|
作者
S. Haddad
S. Charfi-Kaddour
C. Nickel
M. Héritier
R. Bennaceur
机构
[1] Laboratoire de Physique de la Matière Condensée,Département de Physique, Faculté des Sciences de Tunis
[2] Université de Paris Sud,Laboratoire de Physique des Solides (associé au CNRS)
关键词
Magnetic Field; Phase Diagram; Renormalization Group; Magnetic Energy; Group Method;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the competition between the one dimensionalization effect due to a magnetic field and the hopping parameters in quasi-one-dimensional conductors. Our study is based on a perturbative renormalization group method with three cut-off parameters, the bandwidth E0, the 1D-2D crossover temperature T*1, which is related to the hopping process t1, and the magnetic energy \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega_c$\end{document}. We have found that the renormalized crossover temperatures T*1 and T*2, at which the respectively hopping processes t1 and t2 become coherent, are reduced compared to the bare values as the field is increased. We discuss the consequences of these renormalization effects on the temperature-field phase diagram of the organic conductors.
引用
收藏
页码:33 / 39
页数:6
相关论文
共 50 条
  • [31] The quasi-one-dimensional assembly of horseradish peroxidase molecules in presence of the alternating magnetic field
    Sun, Jianfei
    Sun, Feng
    Xu, Beibei
    Gu, Ning
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2010, 360 (1-3) : 94 - 98
  • [32] Effects of dimerization on spin, charge and hopping correlation functions in quasi-one-dimensional organic conductors
    Yonemitsu, K
    PHYSICA B, 2000, 284 : 515 - 516
  • [33] Exploring low-energy landscape of quasi-one-dimensional conductors by heat relaxation and magnetic field
    Biljakovic, K.
    Lasjaunias, J. C.
    Melin, R.
    Monceau, P.
    Remenyi, G.
    Sahling, S.
    Staresinic, D.
    SYNTHETIC METALS, 2009, 159 (21-22) : 2402 - 2405
  • [34] Role of interchain hopping in the magnetic susceptibility of quasi-one-dimensional electron systems
    Fuseya, Yuki
    Tsuchiizu, Masahisa
    Suzumura, Yoshikazu
    Bourbonnais, Claude
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2007, 76 (01)
  • [35] One-dimensionality effects in quasi-one-dimensional conductors
    Zaitsev-Zotov, SV
    JETP LETTERS, 2004, 80 (06) : 445 - 454
  • [36] One-dimensionality effects in quasi-one-dimensional conductors
    S. V. Zaitsev-Zotov
    Journal of Experimental and Theoretical Physics Letters, 2004, 80 : 445 - 454
  • [37] HOPPING CONDUCTION IN QUASI-ONE-DIMENSIONAL DISORDERED COMPOUNDS
    SHANTE, VKS
    PHYSICAL REVIEW B, 1977, 16 (06): : 2597 - 2612
  • [38] DISPERSIVE HOPPING CONDUCTION IN QUASI-ONE-DIMENSIONAL SYSTEMS
    ODAGAKI, T
    LAX, M
    DAY, RS
    PHYSICAL REVIEW B, 1984, 30 (12): : 6911 - 6916
  • [39] ON THE THEORY OF HOPPING CONDUCTION IN QUASI-ONE-DIMENSIONAL SYSTEMS
    ZVYAGIN, IP
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 3 FIZIKA ASTRONOMIYA, 1993, 34 (06): : 94 - 96
  • [40] Magnetic moment of a quasi-one-dimensional nanostructure in an inclined magnetic field
    Geiler, VA
    Margulis, VA
    Tomilin, OB
    JETP LETTERS, 1996, 63 (07) : 578 - 582